首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functions of S-like ribonucleases (RNases) differ considerably from those of S-RNases that function in self-incompatibility. Expression of S-like RNases is usually induced by low nutrition, vermin damage or senescence. However, interestingly, an Australian carnivorous plant Drosera adelae (a sundew), which traps prey with a sticky digestive liquid, abundantly secretes an S-like RNase DA-I in the digestive liquid even in ordinary states. Here, using D. adelae, Dionaea muscipula (Venus flytrap) and Cephalotus follicularis (Australian pitcher plant), we show that carnivorous plants use S-like RNases for carnivory: the gene da-I encoding DA-I and its ortholog cf-I of C. follicularis are highly expressed and constitutively active in each trap/digestion organ, while the ortholog dm-I of D. muscipula becomes highly active after trapping insects. The da-I promoter is unmethylated only in its trap/digestion organ, glandular tentacles (which comprise a small percentage of the weight of the whole plant), but methylated in other organs, which explains the glandular tentacles-specific expression of the gene and indicates a very rare gene regulation system. In contrast, the promoters of dm-I, which shows induced expression, and cf-I, which has constitutive expression, were not methylated in any organs examined. Thus, it seems that the regulatory mechanisms of the da-I, dm-I and cf-I genes differ from each other and do not correlate with the phylogenetic relationship. The current study suggests that under environmental pressure in specific habitats carnivorous plants have managed to evolve their S-like RNase genes to function in carnivory.  相似文献   

2.
The S-like ribonucleases (RNases) RNS1 and RNS2 of Arabidopsis are members of the widespread T2 ribonuclease family, whose members also include the S-RNases, involved in gametophytic self-incompatibility in plants. Both RNS1 and RNS2 mRNAs have been shown previously to be induced by inorganic phosphate (Pi) starvation. In our study we examined this regulation at the protein level and determined the effects of diminishing RNS1 and RNS2 expression using antisense techniques. The Pi-starvation control of RNS1 and RNS2 was confirmed using antibodies specific for each protein. These specific antibodies also demonstrated that RNS1 is secreted, whereas RNS2 is intracellular. By introducing antisense constructs, mRNA accumulation was inhibited by up to 90% for RNS1 and up to 65% for RNS2. These plants contained abnormally high levels of anthocyanins, the production of which is often associated with several forms of stress, including Pi starvation. This effect demonstrates that diminishing the amounts of either RNS1 or RNS2 leads to effects that cannot be compensated for by the actions of other RNases, even though Arabidopsis contains a large number of different RNase activities. These results, together with the differential localization of the proteins, imply that RNS1 and RNS2 have distinct functions in the plant.  相似文献   

3.
We previously isolated from Nicotiana glutinosa leaves three distinct cDNA clones, NGR1, NGR2, and NGR3, encoding a wound-inducible RNase NW, and putative RNases NGR2 and NGR3, respectively. In this study, we produced RNases NW and NGR3 in Escherichia coli and purified them to homogeneity. RNase NGR3 had non-absolute specificity toward polynucleotides, although RNase NW preferentially cleaved polyinosinic acid (Poly I). Both RNases NW and NGR3 were more active toward diribonucleoside monophosphates ApG, CpU, and GpU. Furthermore, kinetic parameters for RNase NW (K m, 0.778 mM and k cat, 1938 min?1) and RNase NGR3 (K m, 0.548 mM and k cat, 408 min?1) were calculated using GpU as a substrate.  相似文献   

4.
Dengue virus threatens around 2.5 billion people worldwide; about 50 million become infected every year, and yet no vaccine or drug is available for prevention and/or treatment. The flaviviral NS2B-NS3pro complex is indispensable for flaviviral replication and is considered to be an important drug target. The aim of this study was to develop a simple and generally applicable experimental strategy to construct, purify, and assay a highly active recombinant NS2B(H)-NS3pro complex that would be useful for high-throughput screening of potential inhibitors. The sequence of NS2B(H)-NS3pro was generated by overlap extension PCR (SOE-PCR) and cloned into the pTrcHisA vector. Hexahistidine-tagged NS2B(H)-NS3pro complex was expressed in E. coli predominantly as insoluble protein and purified to >95% purity by single-step immobilized metal affinity chromatography. SDS-PAGE followed by immunoblotting of the purified enzyme demonstrated the presence of the NS2B(H)-NS3pro precursor and its autocleavage products, NS3pro and NS2B(H), as 37, 21, and 10 kDa bands, respectively. Kinetic parameters, K m, k cat, and k cat/K m for the fluorophore-linked protease model substrate Ac-nKRR-amc were obtained using inner-filter effect correction. The kinetic parameters K m, k cat, and k cat/K m for Ac-nKRR-amc substrate were 100 μM, 0.112 s?1, and 1120 M?1·s?1, respectively. A simplified procedure for the cloning, overexpression, and purification of the NS2B(H)-NS3pro complex was applied, and a highly active recombinant NS2B(H)-NS3pro complex was obtained that could be useful for the design of high-throughput assays aimed at flaviviral inhibitor discovery.  相似文献   

5.
Glycoside hydrolase family 31 α-glucosidases (31AGs) show various specificities for maltooligosaccharides according to chain length. Aspergillus niger α-glucosidase (ANG) is specific for short-chain substrates with the highest kcat/Km for maltotriose, while sugar beet α-glucosidase (SBG) prefers long-chain substrates and soluble starch. Multiple sequence alignment of 31AGs indicated a high degree of diversity at the long loop (N-loop), which forms one wall of the active pocket. Mutations of Phe236 in the N-loop of SBG (F236A/S) decreased kcat/Km values for substrates longer than maltose. Providing a phenylalanine residue at a similar position in ANG (T228F) altered the kcat/Km values for maltooligosaccharides compared with wild-type ANG, i.e., the mutant enzyme showed the highest kcat/Km value for maltotetraose. Subsite affinity analysis indicated that modification of subsite affinities at + 2 and + 3 caused alterations of substrate specificity in the mutant enzymes. These results indicated that the aromatic residue in the N-loop contributes to determining the chain-length specificity of 31AGs.  相似文献   

6.
Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate with NAD(P) as a cofactor in the tricarboxylic acid cycle. As a housekeeping protein in Helicobacter pylori, IDH was considered as a possible candidate for serological diagnostics and detection. Here, we identified a new icd gene encoding IDH from H. pylori strain SS1. The recombinant H. pylori isocitrate dehydrogenase (HpIDH) was cloned, expressed, and purified in E. coli system. The enzymatic characterization of HpIDH demonstrates its activity with k cat of 87 s?1, K m of 124 μM and k cat/K m of 7 × 105 M?1s?1 toward isocitrate, k cat of 80 s?1, K m of 176 μM and k cat/K m of 4.5 × 105 M?1s?1 toward NADP. The optimum pH of the enzyme activity is around 9.0, and the optimum temperature is around 50 °C. This current work is expected to help better understand the features of HpIDH and provide useful information for H. pylori serological diagnostics and detection.  相似文献   

7.
We used quench flow to study how N6-methylated adenosines (m6A) affect the accuracy ratio between kcat/Km (i.e. association rate constant (ka) times probability (Pp) of product formation after enzyme-substrate complex formation) for cognate and near-cognate substrate for mRNA reading by tRNAs and peptide release factors 1 and 2 (RFs) during translation with purified Escherichia coli components. We estimated kcat/Km for Glu-tRNAGlu, EF-Tu and GTP forming ternary complex (T3) reading cognate (GAA and Gm6AA) or near-cognate (GAU and Gm6AU) codons. ka decreased 10-fold by m6A introduction in cognate and near-cognate cases alike, while Pp for peptidyl transfer remained unaltered in cognate but increased 10-fold in near-cognate case leading to 10-fold amino acid substitution error increase. We estimated kcat/Km for ester bond hydrolysis of P-site bound peptidyl-tRNA by RF2 reading cognate (UAA and Um6AA) and near-cognate (UAG and Um6AG) stop codons to decrease 6-fold or 3-fold by m6A introduction, respectively. This 6-fold effect on UAA reading was also observed in a single-molecule termination assay. Thus, m6A reduces both sense and stop codon reading accuracy by decreasing cognate significantly more than near-cognate kcat/Km, in contrast to most error inducing agents and mutations, which increase near-cognate at unaltered cognate kcat/Km.  相似文献   

8.
Genes of β-mannosidase 97 kDa, GH family 2 (bMann9), β-mannanase 48 kDa, GH family 5 (bMan2), and α-galactosidase 60 kDa, GH family 27 (aGal1) encoding galactomannan-degrading glycoside hydrolases of Myceliophthora thermophila C1 were successfully cloned, and the recombinant enzymes were purified to homogeneity and characterized. bMann9 displays only exo-mannosidase activity, the K m and k cat values are 0.4 mM and 15 sec?1 for p-nitrophenyl-β-D-mannopyranoside, and the optimal pH and temperature are 5.3 and 40°C, respectively. bMann2 is active towards galac-tomannans (GM) of various structures. The K m and k cat values are 1.3 mg/ml and 67 sec?1 for GM carob, and the optimal pH and temperature are 5.2 and 69°C, respectively. aGal1 is active towards p-nitrophenyl-α-D-galactopyranoside (PNPG) as well as GM of various structures. The K m and k cat values are 0.08 mM and 35 sec?1 for PNPG, and the optimal pH and temperature are 5.0 and 60°C, respectively.  相似文献   

9.
The solvent kinetic isotope effects (SKIE) on the yeast α-glucosidase-catalyzed hydrolysis of p-nitrophenyl and methyl-d-glucopyranoside were measured at 25 °C. With p-nitrophenyl-d-glucopyranoside (pNPG), the dependence of kcat/Km on pH (pD) revealed an unusually large (for glycohydrolases) solvent isotope effect on the pL-independent second-order rate constant, DOD(kcat/Km), of 1.9 (±0.3). The two pKas characterizing the pH profile were increased in D2O. The shift in pKa2 of 0.6 units is typical of acids of comparable acidity (pKa=6.5), but the increase in pKa1 (=5.7) of 0.1 unit in going from H2O to D2O is unusually small. The initial velocities show substrate inhibition (Kis/Km~200) with a small solvent isotope effect on the inhibition constant [DODKis=1.1 (±0.2)]. The solvent equilibrium isotope effects on the Kis for the competitive inhibitors d-glucose and α-methyl d-glucoside are somewhat higher [DODKi=1.5 (±0.1)]. Methyl glucoside is much less reactive than pNPG, with kcat 230 times lower and kcat/Km 5×104 times lower. The solvent isotope effect on kcat for this substrate [=1.11 (±0. 02)] is lower than that for pNPG [=1.67 (±0.07)], consistent with more extensive proton transfer in the transition state for the deglucosylation step than for the glucosylation step.  相似文献   

10.
Prokaryotic and eukaryotic Na+/Ca2+ exchangers (NCX) control Ca2+ homeostasis. NCX orthologs exhibit up to 104-fold differences in their turnover rates (kcat), whereas the ratios between the cytosolic (cyt) and extracellular (ext) Km values (Kint = KmCyt/KmExt) are highly asymmetric and alike (Kint ≤ 0.1) among NCXs. The structural determinants controlling a huge divergence in kcat at comparable Kint remain unclear, although 11 (out of 12) ion-coordinating residues are highly conserved among NCXs. The crystal structure of the archaeal NCX (NCX_Mj) was explored for testing the mutational effects of pore-allied and loop residues on kcat and Kint. Among 55 tested residues, 26 mutations affect either kcat or Kint, where two major groups can be distinguished. The first group of mutations (14 residues) affect kcat rather than Kint. The majority of these residues (10 out of 14) are located within the extracellular vestibule near the pore center. The second group of mutations (12 residues) affect Kint rather than kcat, whereas the majority of residues (9 out 12) are randomly dispersed within the extracellular vestibule. In conjunction with computational modeling-simulations and hydrogen-deuterium exchange mass-spectrometry (HDX-MS), the present mutational analysis highlights structural elements that differentially govern the intrinsic asymmetry and transport rates. The key residues, located at specific segments, can affect the characteristic features of local backbone dynamics and thus, the conformational flexibility of ion-transporting helices contributing to critical conformational transitions. The underlying mechanisms might have a physiological relevance for matching the response modes of NCX variants to cell-specific Ca2+ and Na+ signaling.  相似文献   

11.
A series of substituted kynurenines (3-bromo-dl, 3-chloro-dl, 3-fluoro-dl, 3-methyl-dl, 5-bromo-l, 5-chloro-l, 3,5-dibromo-l and 5-bromo-3-chloro-dl) have been synthesized and tested for their substrate activity with human and Pseudomonas fluorescens kynureninase. All of the substituted kynurenines examined have substrate activity with both human as well as P. fluorescens kynureninase. For the human enzyme, 3- and 5-substituted kynurenines have kcat and kcat/Km values higher than l-kynurenine, but less than that of the physiological substrate, 3-hydroxykynurenine. However, 3,5-dibromo- and 5-bromo-3-chlorokynurenine have kcat and kcat/Km values close to that of 3-hydroxykynurenine with human kynureninase. The effects of the 3-halo substituents on the reactivity with human kynureninase may be due to electronic effects and/or halogen bonding. In contrast, for the bacterial enzyme, 3-methyl, 3-halo and 3,5-dihalokynurenines are much poorer substrates, while 3-fluoro, 5-bromo, and 5-chlorokynurenine have kcat and kcat/Km values comparable to that of its physiological substrate, l-kynurenine. Thus, 5-bromo and 5-chloro-l-kynurenine are good substrates for both human as well as bacterial enzyme, indicating that both enzymes have space for substituents in the active site near C-5. The increased activity of the 5-halokynurenines may be due to van der Waals contacts or hydrophobic effects. These results may be useful in the design of potent and/or selective inhibitors of human and bacterial kynureninase.  相似文献   

12.
Protein tyrosine phosphatase (PTP) targeted, peptide based chemical probes are valuable tools for studying this important family of enzymes, despite the inherent difficulty of developing peptides targeted towards an individual PTP. Here, we have taken a rational approach to designing a SHP-2 targeted, fluorogenic peptide substrate based on information about the potential biological substrates of SHP-2. The fluorogenic, phosphotyrosine mimetic phosphocoumaryl aminopropionic acid (pCAP) provides a facile readout for monitoring PTP activity. By optimizing the amino acids surrounding the pCAP residue, we obtained a substrate with the sequence Ac-DDPI-pCAP-DVLD-NH2 and optimized kinetic parameters (kcat = 0.059 ± 0.008 s−1, Km = 220 ± 50 µM, kcat/Km of 270 M−1s−1). In comparison, the phosphorylated coumarin moiety alone is an exceedingly poor substrate for SHP-2, with a kcat value of 0.0038 ± 0.0003 s−1, a Km value of 1100 ± 100 µM and a kcat/Km of 3 M−1s−1. Furthermore, this optimized peptide has selectivity for SHP-2 over HePTP, MEG1 and PTPµ. The data presented here demonstrate that PTP-targeted peptide substrates can be obtained by optimizing the sequence of a pCAP containing peptide.  相似文献   

13.
The role of calcium ion in the active site of the inverting glycoside hydrolase family 97 enzyme, BtGH97a, was investigated through structural and kinetic studies. The calcium ion was likely directly involved in the catalytic reaction. The pH dependence of kcat/Km values in the presence or absence of calcium ion indicated that the calcium ion lowered the pKa of the base catalyst. The significant decreases in kcat/Km for hydrolysis of substrates with basic leaving groups in the absence of calcium ion confirmed that the calcium ion facilitated the leaving group departure.  相似文献   

14.
A simplified procedure for the preparation of pepsin from porcine pepsinogen has been developed. Chromatographic and kinetic data indicate that this procedure yields a pepsin product identical with that obtained by the conventional method.The Km and kcat values for the hydrolysis of Ac-Phe-Tyr-OMe by commercial and freshly prepared pepsins were determined. All pepsins studied were found to have the same value for kcat. The parameter which kinetically distinguished each of the pepsins was Km.  相似文献   

15.
Hong SH  Lim YR  Kim YS  Oh DK 《Biochimie》2012,94(9):1926-1934
A recombinant thermostable l-fucose isomerase from Dictyoglomus turgidum was purified with a specific activity of 93 U/mg by heat treatment and His-trap affinity chromatography. The native enzyme existed as a 410 kDa hexamer. The maximum activity for l-fucose isomerization was observed at pH 7.0 and 80 °C with a half-life of 5 h in the presence of 1 mM Mn2+ that was present one molecular per monomer. The isomerization activity of the enzyme with aldose substrates was highest for l-fucose (with a kcat of 15,500 min−1 and a Km of 72 mM), followed by d-arabinose, d-altrose, and l-galactose. The 15 putative active-site residues within 5 Å of the substrate l-fucose in the homology model were individually replaced with other amino acids. The analysis of metal-binding capacities of these alanine-substituted variants revealed that Glu349, Asp373, and His539 were metal-binding residues, and His539 was the most influential residue for metal binding. The activities of all variants at 349 and 373 positions except for a dramatically decreased kcat of D373A were completely abolished, suggesting that Glu349 and Asp373 were catalytic residues. Alanine substitutions at Val131, Met197, Ile199, Gln314, Ser405, Tyr451, and Asn538 resulted in substantial increases in Km, suggesting that these amino acids are substrate-binding residues. Alanine substitutions at Arg30, Trp102, Asn404, Phe452, and Trp510 resulted in decreases in kcat, but had little effect on Km.  相似文献   

16.
Alcohol dehydrogenase SS was prepared from horse liver by salt fractionation, ion-exchange chromatography, and affinity chromatography. The purified isoenzyme is free from extraneous protein and other alcohol dehydrogenase isoenzyme contaminants and contains four Zinc atoms per molecule. The substrate specificity with saturated aliphatic alcohols and aldehydes of two to six carbon chain lengths has been investigated. The Km values and turnover numbers at maximal velocity (kcat) are presented. Values of kcat are constant within a substrate category and independent of the substrate chain length, while the Km values decrease with the increase of the substrate chain length. The Km values for two- and three-carbon substrates are large, that for ethanol (40 mm) is two orders of magnitude larger than that reported for classical preparations of horse liver alcohol dehydrogenase. At pH 7, the kcat values for alcohol oxidation are almost 30 times smaller than for aldehyde reduction. The enzyme has been characterized with regard to specific activity with several nonsteroidal substrates and with two steroids: 3-oxo-5β-androstan-17β-ol and 5β-pregnan-21-ol-3,20-dione hemisuccinate. NAD(H) is the preferred coenzyme. Values of Km for NADH with constant steroidal substrates are an order of magnitude smaller than the corresponding Km values with nonsteroidal substrates. A possible explanation for this observation is presented.  相似文献   

17.
Formation of the methylenedioxy bridge is an integral step in the biosynthesis of benzo[c]phenanthridine and protoberberine alkaloids in the Papaveraceae family of plants. This reaction in plants is catalyzed by cytochrome P450-dependent enzymes. Two cDNAs that encode cytochrome P450 enzymes belonging to the CYP719 family were identified upon interrogation of an EST dataset prepared from 2-month-old plantlets of the Mexican prickly poppy Argemone mexicana that accumulated the benzo[c]phenanthridine alkaloid sanguinarine and the protoberberine alkaloid berberine. CYP719A13 and CYP719A14 are 58% identical to each other and 77% and 60% identical, respectively, to stylopine synthase CYP719A2 of benzo[c]phenanthridine biosynthesis in Eschscholzia californica. Functional heterologous expression of CYP719A14 and CYP719A13 in Spodoptera frugiperda Sf9 cells produced recombinant enzymes that catalyzed the formation of the methylenedioxy bridge of (S)-cheilanthifoline from (S)-scoulerine and of (S)-stylopine from (S)-cheilanthifoline, respectively. Twenty-seven potential substrates were tested with each enzyme. Whereas CYP719A14 transformed only (S)-scoulerine to (S)-cheilanthifoline (Km 1.9 ± 0.3; kcat/Km 1.7), CYP719A13 converted (S)-tetrahydrocolumbamine to (S)-canadine (Km 2.7 ± 1.3; kcat/Km 12.8), (S)-cheilanthifoline to (S)-stylopine (Km 5.2 ± 3.0; kcat/Km 2.6) and (S)-scoulerine to (S)-nandinine (Km 8.1 ± 1.9; kcat/Km 0.7). These results indicate that although CYP719A14 participates in only sanguinarine biosynthesis, CYP719A13 can be involved in both sanguinarine and berberine formation in A. mexicana.  相似文献   

18.
19.
Xylitol dehydrogenase (XDH) (EC 1.1.1.9) is one of the key enzymes in the xylose fermentation pathway in yeast and fungi. A xylitol dehydrogenase gene (XYL2) encoding a XDH was cloned from Kluyveromyces marxianus NBRC 1777, and the in vivo function was validated by disruption and complementation analysis. The highest activity of KmXDH could be observed at pH 9.5 during 55°C. The values of k cat/K m indicate that KmXDH prefers NAD+ to NADP+ (k cat/K m NAD + 3681/min mM and k cat/K m NADP + 1361/min mM). The different coenzyme preference between KmXR and KmXDH caused an accumulation of NADH in the xylose utilization pathway. The redox imbalance may be one of the reasons to cause the poor xylose fermentation under oxygen-limited conditions in K. marxianus NBRC1777.  相似文献   

20.
Summary The apparent Michaelis constant (K m) of NADH for muscle-type (M4 isozyme) lactate dehydrogenases (LDHs) is highest, at any given temperature of measurement, for LDHs of cold-adapted vertebrates (Table 1). However, these interspecific differences in theK m of NADH are not due to variations in LDH-NADH binding affinity. Rather, theK m differences result entirely from interspecific variation in the substrate turnover constant (k cat) (Fig. 1; Table 2). This follows from the fact that theK m of NADH is equal tok cat divided by the on constant for NADH binding to LDH,k 1, so that interspecific differences ink cat, combined with identical values fork 1 among different LDH reactions, make the magnitude of theK m of NADH a function of substrate turnover number. The temperature dependence of theK m of NADH for a single LDH homologue is the net result of temperature dependence of bothk cat andk 1 (Figs. 3 and 4). Temperature independentK m values can result from simultaneous, and algebraically offsetting, increases ink cat andk 1 with rising temperature. Salt-induced changes in theK m of NADH also may be due to simultaneous perturbation of bothk cat andk 1 (Table 3). These findings are discussed from the standpoint of the evolution of LDH kinetic properties, particularly the interspecific conservation of catalytic and regulatory functions, in differently-adapted species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号