首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantifying the timing and intensity of migratory movements is imperative for understanding impacts of changing landscapes and climates on migratory bird populations. Billions of birds migrate in the Western Hemisphere, but accurately estimating the population size of one migratory species, let alone hundreds, presents numerous obstacles. Here, we quantify the timing, intensity, and distribution of bird migration through one of the largest migration corridors in the Western Hemisphere, the Gulf of Mexico (the Gulf). We further assess whether there have been changes in migration timing or intensity through the Gulf. To achieve this, we integrate citizen science (eBird) observations with 21 years of weather surveillance radar data (1995–2015). We predicted no change in migration timing and a decline in migration intensity across the time series. We estimate that an average of 2.1 billion birds pass through this region each spring en route to Nearctic breeding grounds. Annually, half of these individuals pass through the region in just 18 days, between April 19 and May 7. The western region of the Gulf showed a mean rate of passage 5.4 times higher than the central and eastern regions. We did not detect an overall change in the annual numbers of migrants (2007–2015) or the annual timing of peak migration (1995–2015). However, we found that the earliest seasonal movements through the region occurred significantly earlier over time (1.6 days decade?1). Additionally, body mass and migration distance explained the magnitude of phenological changes, with the most rapid advances occurring with an assemblage of larger‐bodied shorter‐distance migrants. Our results provide baseline information that can be used to advance our understanding of the developing implications of climate change, urbanization, and energy development for migratory bird populations in North America.  相似文献   

2.
Living organisms generally occur at the highest population density in the most suitable habitat. Therefore, invasion of and adaptation to novel habitats imply a gradual increase in population density, from that at or below what was found in the ancestral habitat to a density that may reach higher levels in the novel habitat following adaptation to that habitat. We tested this prediction of invasion biology by analyzing data on population density of breeding birds in their ancestral rural habitats and in matched nearby urban habitats that have been colonized recently across a continental latitudinal gradient. We estimated population density in the two types of habitats using extensive point census bird counts, and we obtained information on the year of urbanization when population density in urban habitats reached levels higher than that of the ancestral rural habitat from published records and estimates by experienced ornithologists. Both the difference in population density between urban and rural habitats and the year of urbanization were significantly repeatable when analyzing multiple populations of the same species across Europe. Population density was on average 30 % higher in urban than in rural habitats, although density reached as much as 100-fold higher in urban habitats in some species. Invasive urban bird species that colonized urban environments over a long period achieved the largest increases in population density compared to their ancestral rural habitats. This was independent of whether species were anciently or recently urbanized, providing a unique cross-validation of timing of urban invasions. These results suggest that successful invasion of urban habitats was associated with gradual adaptation to these habitats as shown by a significant increase in population density in urban habitats over time.  相似文献   

3.
Habitat fragmentation is a growing problem worldwide. Particularly in river systems, numerous dams and weirs hamper the movement of a wide variety of species. With the aim to preserve connectivity for fish, many barriers in river systems are equipped with fishways (also called fish passages or fish ladders). However, few fishways provide full connectivity. Here we hypothesized that restricted seasonal opening times of fishways can importantly reduce their effectiveness by interfering with the timing of fish migration, for both spring‐ and autumn‐spawning species. We empirically tested our hypothesis, and discuss the possible eco‐evolutionary consequences of affected migration timing. We analyzed movements of two salmonid fishes, spring‐spawning European grayling (Thymallus thymallus) and autumn‐spawning brown trout (Salmo trutta), in Norway's two largest river systems. We compared their timing of upstream passage through four fishways collected over 28 years with the timing of fish movements in unfragmented river sections as monitored by radiotelemetry. Confirming our hypothesis, late opening of fishways delayed the migration of European grayling in spring, and early closure of fishways blocked migration for brown trout on their way to spawning locations during late autumn. We show in a theoretical framework how restricted opening times of fishways can induce shifts from migratory to resident behavior in potamodromous partial migration systems, and propose that this can induce density‐dependent effects among fish accumulating in lower regions of rivers. Hence, fragmentation may not only directly affect the migratory individuals in the population, but may also have effects that cascade downstream and alter circumstances for resident fish. Fishway functionality is inadequate if there is a mismatch between natural fish movements and fishway opening times in the same river system, with ecological and possibly evolutionary consequences for fish populations.  相似文献   

4.
The strength of migratory connectivity is a measure of the cohesion of populations among phases of the annual cycle, including breeding, migration, and wintering. Many Nearctic‐Neotropical species have strong migratory connectivity between breeding and wintering phases of the annual cycle. It is less clear if this strength persists during migration when multiple endogenous and exogenous factors may decrease the cohesion of populations among routes or through time along the same routes. We sampled three bird species, American redstart Setophaga ruticilla, ovenbird Seiurus aurocapilla, and wood thrush Hylocichla mustelina, during spring migration through the Gulf of Mexico region to test if breeding populations differentiate spatially among migration routes or temporally along the same migration routes and the extent to which within‐population timing is a function of sex, age, and carry‐over from winter habitat, as measured by stable carbon isotope values in claws (δ13C). To make quantitative comparisons of migratory connectivity possible, we developed and used new methodology to estimate the strength of migratory connectivity (MC) from probabilistic origin assignments identified using stable hydrogen isotopes in feathers (δ2H). We found support for spatial differentiation among routes by American redstarts and ovenbirds and temporal differentiation along routes by American redstarts. After controlling for breeding origin, the timing of American redstart migration differed among ages and sexes and ovenbird migration timing was influenced by carry‐over from winter habitat. The strength of migratory connectivity did not differ among the three species, with each showing weak breeding‐to‐spring migration MC relative to prior assessments of breeding‐wintering connectivity. Our work begins to fill an essential gap in methodology and understanding of the extent to which populations remain together during migration, information critical for a full annual cycle perspective on the population dynamics and conservation of migratory animals.  相似文献   

5.
Climate change is affecting behaviour and phenology in many animals. In migratory birds, weather patterns both at breeding and at non-breeding sites can influence the timing of spring migration and breeding. However, variation in responses to weather across a species range has rarely been studied, particularly among populations that may winter in different locations. We used prior knowledge of migratory connectivity to test the influence of weather from predicted non-breeding sites on bird phenology in two breeding populations of a long-distance migratory bird species separated by 3,000 km. We found that winter rainfall showed similar associations with arrival and egg-laying dates in separate breeding populations on an east–west axis: greater rainfall in Jamaica and eastern Mexico was generally associated with advanced American redstart (Setophaga ruticilla) phenology in Ontario and Alberta, respectively. In Ontario, these patterns of response could largely be explained by changes in the behaviour of individual birds, i.e., phenotypic plasticity. By explicitly incorporating migratory connectivity into responses to climate, our data suggest that widely separated breeding populations can show independent and geographically specific associations with changing weather conditions. The tendency of individuals to delay migration and breeding following dry winters could result in population declines due to predicted drying trends in tropical areas and the tight linkage between early arrival/breeding and reproductive success in long-distance migrants.  相似文献   

6.
Among the endangered flora of the Mediterranean basin, Teucrium pseudochamaepitys, endemic Lamiaceae, is threatened by human activities. The threats are even more important that its distribution in Mediterranean France is very limited. This study was based on the comparison of nine sites urbanized or impacted by other human activities. Particularly, the associated plant community, the density and reproductive parameters of the study species, and pollinator activities were compared to asset the effect of urbanization and land use changes on the local population persistence. Interestingly, in urban sites, the result shows more ruderal species and a higher density of T. pseudochamaepitys due to clonal growth. Surprisingly, reproductive success is low in each site despite an effective insect pollination. However, diversity of pollinators is lower in urban sites. Effects are thus contrasted considering urbanization and land use changes. Changes in land uses lead to closing landscape which threaten short term persistence of populations due to competition while the loss of pollinator diversity may impact urban populations over the long term only.  相似文献   

7.
Migratory connectivity can have important consequences for individuals, populations and communities. We argue that most consequences not only depend on which sites are used but importantly also on when these are used and suggest that the timing of migration is characterised by synchrony, phenology, and consistency. We illustrate the importance of these aspects of timing for shaping the consequences of migratory connectivity on individual fitness, population dynamics, gene flow and community dynamics using examples from throughout the animal kingdom. Exemplarily for one specific process that is shaped by migratory connectivity and the timing of migration – the transmission of parasites and the dynamics of diseases – we underpin our arguments with a dynamic epidemiological network model of a migratory population. Here, we quantitatively demonstrate that variations in migration phenology and synchrony yield disease dynamics that significantly differ from a time‐neglecting case. Extending the original definition of migratory connectivity into a spatio‐temporal concept can importantly contribute to understanding the links migratory animals make across the globe and the consequences these may have both for the dynamics of their populations and the communities they visit throughout their journeys. Synthesis Migratory connectivity quantifies the links migrant animals make across the globe and these can have manifold consequences – from individual fitness, population dynamics, gene flow to transmission of pathogens and parasites. We show through the use of empirical examples and a conceptual model that these consequences not only depend on which sites are used but importantly also on when these are used. Therefore, we specify three dimensions of migration timing – phenology, synchrony and consistency, which describe the timing of migration 1) relative to development of key resources; 2) relative to the migration of other individuals; and 3) relative to previous migration events. Each of these dimensions can alter the consequences, but typically through different mechanisms.  相似文献   

8.
Urban areas are expanding rapidly, but a few native species have successfully colonized them. The processes underlying such colonization events are poorly understood. Using the blackbird Turdus merula, a former forest specialist that is now one of the most common urban birds in its range, we provide the first assessment of two contrasting urban colonization models. First, that urbanization occurred independently. Second, that following initial urbanization, urban-adapted individuals colonized other urban areas in a leapfrog manner. Previous analyses of spatial patterns in the timing of blackbird urbanization, and experimental introductions of urban and rural blackbirds to uncolonized cities, suggest that the leapfrog model is likely to apply. We found that, across the western Palaearctic, urban blackbird populations contain less genetic diversity than rural ones, urban populations are more strongly differentiated from each other than from rural populations and assignment tests support a rural source population for most urban individuals. In combination, these results provide much stronger support for the independent urbanization model than the leapfrog one. If the former model predominates, colonization of multiple urban centres will be particularly difficult when urbanization requires genetic adaptations, having implications for urban species diversity.  相似文献   

9.
Two populations of beluga whales (Delphinapterus leucas), the Eastern Beaufort Sea (BS) and Eastern Chukchi Sea (ECS), make extensive seasonal migrations into the Pacific Arctic. However, the extent to which these populations overlap in time and space is not known. We quantified distribution and migration patterns for BS and ECS belugas using daily locations from whales tracked with satellite-linked transmitters. Home ranges and core areas in summer (July and August) and in each month (July–November), daily displacement, dispersal from core areas, and autumn migration timing were estimated. Distinct summer and fall distribution patterns and staggered autumn migration timing were identified for BS and ECS whales. Summer home ranges for each population had less than 10 % overlap. Monthly home ranges were also relatively distinct between populations except in September (up to 88 % home range overlap). A distinct east–west shift in focal area use occurred in September that persisted into October, with the two populations essentially switching longitudinal positions. Highest daily displacements occurred during the migratory period in September for BS whales and October for ECS whales, further indicating westward fall migration was offset between populations. Sexual segregation of males and females within a population also varied monthly. Autumn migration timing as well as differences in spatial and temporal segregation between BS and ECS beluga populations may be a result of maternally driven philopatry and population-specific adaptations to dynamically available resources. Our results contribute to the management of these populations by identifying seasonal area use and differences in migration patterns.  相似文献   

10.
城市化对空气污染人群暴露贡献的定量方法研究   总被引:2,自引:0,他引:2  
短期快速城市化引发一系列生态环境问题,尤其是近年来以细颗粒物(PM_(2.5))为代表的城市与区域空气污染问题。人群的污染暴露一方面是因为污染区范围的扩张,另外一方面则归因于城市化引发的人口迁移,目前的研究重点关注于前者的贡献,而忽略了后者的贡献。因此,建立了城市化对空气污染人群暴露贡献的定量方法,并选取我国PM_(2.5)污染最为严重的京津冀城市群开展了实证研究,通过利用2000、2005、2010、2015年PM_(2.5)浓度和人口栅格数据以及人口自然增长率数据,定量评估了城市化引发的人口迁移对空气污染人群暴露的贡献。研究结果显示:(1)京津冀地区受污染影响面积和人口变化显著,造成大量的人口暴露于PM_(2.5)污染。(2)城市化引发的人口迁移与自然增长贡献率方面:总体上,2000—2015年,京津冀城市群总的人口迁移贡献率为48%,北京市和天津市总的人口迁移贡献率分别为94%和88%,而河北省污染总的人口迁移贡献率为-32%。其中在污染保持区,北京市和天津市的人口迁移贡献率均接近100%,而河北省的迁移贡献率为-26%,尤其在2010—2015年,河北省衡水市的人口迁移贡献率达到-6613%;在污染新增区,北京市和天津市的人口迁移贡献率分别为86%和84%,而河北省污染的人口迁移贡献率为-757%。本研究建立了定量化的方法揭示了城市化在空气污染人群暴露中的定量贡献,为科学引导城市化发展提供了定量的手段,为合理规划京津冀城市群地区的人口流动与空气污染奠定了数据基础。  相似文献   

11.
Migration is an important event in the life history of many animals, but there is considerable variation within populations in the timing and final destination. Such differential migration at the population level can be strongly determined by individuals showing different consistencies in migratory traits. By tagging individual cyprinid fish with uniquely coded electronic tags, and recording their winter migrations from lakes to streams for 6 consecutive years, we obtained highly detailed long-term information on the differential migration patterns of individuals. We found that individual migrants showed consistent site fidelities for over-wintering streams over multiple migratory seasons and that they were also consistent in their seasonal timing of migration. Our data also suggest that consistency itself can be considered as an individual trait, with migrants that exhibit consistent site fidelity also showing consistency in migratory timing. The finding of a mixture of both consistent and inconsistent individuals within a population furthers our understanding of intrapopulation variability in migration strategies, and we hypothesize that environmental variation can maintain such different strategies.  相似文献   

12.
Over the course of the annual cycle, migratory bird populations can be impacted by environmental conditions in regions separated by thousands of kilometers. We examine how climatic conditions during discrete periods of the annual cycle influence the demography of a nearctic-neotropical migrant population of yellow warblers (Setophaga petechia), that breed in western Canada and overwinter in Mexico. We demonstrate that wind conditions during spring migration are the best predictor of apparent annual adult survival, male arrival date, female clutch initiation date and, via these timing effects, annual productivity. We find little evidence that conditions during the wintering period influence breeding phenology and apparent annual survival. Our study emphasizes the importance of climatic conditions experienced by migrants during the migratory period and indicates that geography may play a role in which period most strongly impacts migrant populations.  相似文献   

13.
Partial migration, whereby a proportion of the population migrates, is common across the animal kingdom. Much of the focus in the literature has been on trying to explain the underlying mechanisms for the coexistence of migrants and residents. In addition, there has been an increasing number of reports on the prevalence and frequency of partially migratory populations. One possible explanation for the occurrence of partial migration, which has received no attention in the literature, is that of ‘transient coexistence’ during the invasion phase of a superior behaviour. In this study we develop a theoretical basis for explaining partial migration as a transient coexistence and derive a method to predict the frequency of residents and migrants in partially migrating populations. This method is useful to predict the frequencies of migrants and residents in a small set of populations as a complementing hypothesis to ‘an Evolutionary Stable Strategy (ESS)’. We use the logistic growth equation to derive a formula for predicting the frequencies of residents and migrants. We also use simulations and empirical data from white perch (Morone americana), moose (Alces alces) and red deer (Cervus elaphus) to demonstrate our approach. We show that the probability of detecting partial migration due to transient coexistence depends upon a minimum number of tracked or marked individuals for a given number of populations. Our approach provides a starting point in searching for explanations to the observed frequencies, by contrasting the observed pattern with both the predicted transient and the uniform random pattern. Aggregating such information on observed patterns (proportions of migrants and residents) may eventually lead to the development of a quantitative theory for the equilibrium (ESS) populations as well.  相似文献   

14.
Understanding what drives or prevents long‐distance migrants to respond to environmental change requires basic knowledge about the wintering and breeding grounds, and the timing of movements between them. Both strong and weak migratory connectivity have been reported for Palearctic passerines wintering in Africa, but this remains unknown for most species. We investigated whether pied flycatchers Ficedula hypoleuca from different breeding populations also differ in wintering locations in west‐Africa. Light‐level geolocator data revealed that flycatchers from different breeding populations travelled to different wintering sites, despite similarity in routes during most of the autumn migration. We found support for strong migratory connectivity showing an unexpected pattern: individuals breeding in Fennoscandia (S‐Finland and S‐Norway) wintered further west compared to individuals breeding at more southern latitudes in the Netherlands and SW‐United Kingdom. The same pattern was found in ring recovery data from sub‐Saharan Africa of individuals with confirmed breeding origin. Furthermore, population‐specific migratory connectivity was associated with geographical variation in breeding and migration phenology: birds from populations which breed and migrate earlier wintered further east than birds from ‘late’ populations. There was no indication that wintering locations were affected by geolocation deployment, as we found high repeatability and consistency in δ13C and δ15N stable isotope ratios of winter grown feathers of individuals with and without a geolocator. We discuss the potential ecological factors causing such an unexpected pattern of migratory connectivity. We hypothesise that population differences in wintering longitudes of pied flycatchers result from geographical variation in breeding phenology and the timing of fuelling for spring migration at the wintering grounds. Future research should aim at describing how temporal dynamics in food availability across the wintering range affects migration, wintering distribution and populations’ capacity to respond to environmental changes.  相似文献   

15.
Benthic populations of Euglena viridis exhibit vertical migration behavior on high energy intertidal beaches and along the sand banks of freshwater streams. This study examines similarities and differences in the migratory behavior and cell morphology of populations of E. viridis inhabiting Scripps Beach, La Jolla, California and Coble Brook, Burlington, North Carolina. The timing of migration was measured by counting the number of cells in samples collected from the sediment surface throughout the day. Sediment cores were extracted and sectioned to determine the vertical distribution of the population. Neutral density filters and opaque canisters were used to shade the substratum to 56%, 22%, 2%, and 0% of incident irradiance (Io) to examine the effect of light on cell morphology and migratory behavior. On intertidal beaches, E. viridis exhibited a tidal rhythm in vertical migration with cells migrating below the sediment surface at night (>15 cm) and during daytime high tides. In this habitat, the upward migration response was enhanced at irradiances lower than 100% Io but cell morphology was not altered by shading. On the banks of freshwater streams, E. viridis exhibited a diurnal migratory rhythm with both tear‐drop and spherical morphologies observed throughout the day. The population was most concentrated at the surface around solar noon and at night it was located between 1 and 2 cm below the surface. Shading did not enhance upward migration but it did affect cell morphology. These results will be interpreted in the context of the dominant selection pressures in each environment.  相似文献   

16.
This paper generalizes the data obtained in 1995–2014 in the regions of the Sulak and Turali lagoons of Dagestan (the western coast of the Middle Caspian). The lagoons are located in a “bottleneck” that is a narrow migration corridor traversed by one of the largest migration routes of trans-palearctic species in Russia. This route is a part of the West Siberian–East African migration range. The migration traffic and territorial localization of the Laridae populations participating in the total migratory flow along the western coast of the Caspian Sea have been determined. The present-day migratory range of Laridae that covers the space from West Europe to the Baikal Lake and West India is specified. It is determined that Dagestan is crossed not by one but two independent and stable migration flows of Laridae, which fly across the transit region in different migration routes, but at the same periods of time. Three types of migration intensity of Laridae across the study area are defined: weak, average, and mass migration. Both spring and autumn migrations include five peaks of migration activity (migratory waves). Migratory timing, taxonomical composition, and abundance of different Laridae species vary for each degree type of migratory waves. The key determinants of migratory wave intensities are the abundance of migratory populations and weather conditions of a year. Over the last 5–7 years there has been a steady decrease in the abundance of some Laridae species on the western coast of the Middle Caspian that takes place under the impact of a set of regulating factors, which act across the whole migration range. The decrease in the abundance of migratory Laridae leads to a “blurring” of clear boundaries between migratory waves and migration intensity, changing migration routes of some Laridae populations, which now have shifted from traditional wintering routes along the western coast of the Caspian Sea and countries of the Middle East and northeastern Africa to India.  相似文献   

17.
Migration is a critical period in a bird’s life that can affect the fitness of individuals. Intra-population migratory patterns and the way different sex and/or age classes within a population differ in timing and/or distance of migration are not completely understood. The present study aims to observe inter- and intra-population migratory patterns in the western population of Lesser Black-backed Gulls (Larus fuscus spp.), shedding light on age-related differences of temporal patterns of occurrence in the Portuguese coastal areas during migration and winter. One thousand seven hundred and fifty-four colour ring records were analysed matching a 30-year period of observations on the Portuguese coast between 1975 and 2005. During migration, the graellsii population represents 90% of the migratory flow of L. fuscus through Portugal with the intermedius accounting for 9% and the fuscus population, being vestigial in this period, accounting for 1%. Nevertheless, interesting significant differences were observed between the age classes of the three populations during this period, the graellsii population having a large number of first winters (40% of the migratory contingent of this population) followed by immatures and adults whilst in the intermedius and fuscus populations, the largest age class is the adults. During winter, no inter-population differences were found. When comparing migration and winter periods, intra-population differences were found in the graellsii and fuscus populations regarding distribution and age classes. These results indicate different migratory routes amongst different populations suggesting a leapfrog migration in L. fuscus and also a differential age-related migration pattern that might result from first winters migrating further south in search of a wintering place since adults heavily occupy the closest wintering quarters in their attempt to arrive earlier at their breeding ground.  相似文献   

18.
Early juvenile growth is a good indicator of growth later in life in many species because larger than average juveniles tend to have a competitive advantage. However, for migratory species the relationship between juvenile and adult growth remains obscure. We used scale analysis to reconstruct growth trajectories of migratory sea trout (Salmo trutta) from six neighbouring populations, and compared the size individuals attained in freshwater (before migration) with their subsequent growth at sea (after migration). We also calculated the coefficient of variation (CV) to examine how much body size varied across populations and life stages. Specifically, we tested the hypothesis that the CV on body size would differ between freshwater and marine environment, perhaps reflecting different trade-offs during ontogeny. Neighbouring sea trout populations differed significantly in time spent at sea and in age-adjusted size of returning adults, but not on size of seaward migration, which was surprisingly uniform and may be indicative of strong selection pressures. The CV on body size decreased significantly over time and was highest during the first 8 months of life (when juvenile mortality is highest) and lowest during the marine phase. Size attained in freshwater was negatively related to growth during the first marine growing season, suggesting the existence of compensatory growth, whereby individuals that grow poorly in freshwater are able to catch up later at sea. Analysis of 61 datasets indicates that negative or no associations between pre- and post-migratory growth are common amongst migratory salmonids. We suggest that despite a widespread selective advantage of large body size in freshwater, freshwater growth is a poor predictor of final body size amongst migratory fish because selection may favour growth heterochrony during transitions to a novel environment, and marine compensatory growth may negate any initial size advantage acquired in freshwater.  相似文献   

19.
The spatial extent and intensity of artificial light at night (ALAN) has increased worldwide through the growth of urban environments. There is evidence that nocturnally migrating birds are attracted to ALAN, and there is evidence that nocturnally migrating bird populations are more likely to occur in urban areas during migration, especially in the autumn. Here, we test if urban sources of ALAN are responsible, at least in part, for these observed urban associations. We use weekly estimates of diurnal occurrence and relative abundance for 40 nocturnally migrating bird species that breed in forested environments in North America to assess how associations with distance to urban areas and ALAN are defined across the annual cycle. Migratory bird populations presented stronger than expected associations with shorter distances to urban areas during migration, and stronger than expected association with higher levels of ALAN outside and especially within urban areas during migration. These patterns were more pronounced during autumn migration, especially within urban areas. Outside of the two migration periods, migratory bird populations presented stronger than expected associations with longer distances to urban areas, especially during the nonbreeding season, and weaker than expected associations with the highest levels of ALAN outside and especially within urban areas. These findings suggest that ALAN is associated with higher levels of diurnal abundance along the boundaries and within the interior of urban areas during migration, especially in the autumn when juveniles are undertaking their first migration journey. These findings support the conclusion that urban sources of ALAN can broadly effect migratory behavior, emphasizing the need to better understand the implications of ALAN for migratory bird populations.  相似文献   

20.
Kinlan  B.P. 《Journal of phycology》2003,39(S1):29-29
Benthic populations of Euglena viridis exhibit vertical migration behavior on high energy intertidal beaches and along the sand banks of freshwater streams. This study examines similarities and differences in the migratory behavior and cell morphology of populations of E. viridis inhabiting Scripps Beach, La Jolla, California and Coble Brook, Burlington, North Carolina. The timing of migration was measured by counting the number of cells in samples collected from the sediment surface throughout the day. Sediment cores were extracted and sectioned to determine the vertical distribution of the population. Neutral density filters and opaque canisters were used to shade the substratum to 56%, 22%, 2%, and 0% of incident irradiance (Io) to examine the effect of light on cell morphology and migratory behavior. On intertidal beaches, E. viridis exhibited a tidal rhythm in vertical migration with cells migrating below the sediment surface at night (>15 cm) and during daytime high tides. In this habitat, the upward migration response was enhanced at irradiances lower than 100% Io but cell morphology was not altered by shading. On the banks of freshwater streams, E. viridis exhibited a diurnal migratory rhythm with both tear-drop and spherical morphologies observed throughout the day. The population was most concentrated at the surface around solar noon and at night it was located between 1 and 2 cm below the surface. Shading did not enhance upward migration but it did affect cell morphology. These results will be interpreted in the context of the dominant selection pressures in each environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号