首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
DNA isolated from purified nuclei of Polytoma obtusum has a buoyant density of 1.711 g/ml in CsCl, a Tm of 91.3° C in SSC, and a G + C content of 52.5% as determined by base composition analysis. Thermal dissociation and reassociation studies indicated that this nuclear DNA contains a considerable amount of heterogeneity. Under appropriate reannealing conditions for denatured DNA, about 15% of the DNA reannealed to form a satellite peak at a density of 1.711 g/ml within one hour. Native DNA fractions of different average buoyant densities, ranging from 1.723 to 1.708 g/ml were also obtained in a preparative CsCl gradient, indicating the presence of intermolecular heterogeneity at a molecular size of 8.5×106 daltons. The nuclear DNA reassociated as three distinct classes. The very fast species constituted about 20 % of the total hyperchromicity, the class of intermediate rate comprised roughly 10% of the nuclear DNA, while the remaining 70% consisted of unique sequences. The haploid genome set was estimated by renaturation kinetics studies to contain 5.0×1010 daltons of DNA or 7.5×107 nucleotide pairs. The analytical complexity of the total nuclear genome was found to be 9.35×1010 daltons, thus indicating that vegetative cells of P. obtusum are diploid.  相似文献   

2.
Chloroplast ribosomal RNA genes in the chloroplast DNA of Euglena gracilis   总被引:4,自引:0,他引:4  
Euglena chloroplast DNA has a buoyant density in CsCI of 1.686. Shearing this DNA produces a satellite band at density 1.700. The satellite, easily lost during preparative CsCI gradient centrifugation of chloroplast DNA, contains the genes for chloroplast ribosomal RNA. Pure Euglena chloroplast DNA is shown to contain one set of ribosomal RNA genes for each 90 × 106 daltons of DNA.  相似文献   

3.
H.C. Birnboim  R. Sederoff 《Cell》1975,5(2):173-181
Very long runs of pyrimidine nucleotides (polypyrimidines), previously detected in DNA from Drosophila melanogaster, have now been localized to a “cryptic” satellite. These polypyrimidines have an average length of 750 nucleotides and account for about 3% of the thymine residues in total DNA. The buoyant density of the DNA component which contains the polypyrimidines was detected by centrifuging native DNA to equilibrium in a CsCI gradient, and then assaying each fraction for its content of polypyrimidines. A peak was detected at a density of about 1.707 gm/cm3, distinctly heavier than the main band of DNA (1.702 gm/cm3). The buoyant density of polypyrimidine-containing molecules was little affected by differences in the molecular weight of the starting DNA in the range 105-107 daltons (single-stranded). Thus polypyrimidines (and their complementary polypurines) appear to form all or part of a “cryptic” satellite.Polypyrimidines have been isolated and characterized with respect to composition and buoyant density. Direct nucleoside analysis of unlabeled material indicated 34.5% deoxycytidine, 65.5% thymidine. Their banding position in neutral and alkaline CsCI gradients was consistent with a single-stranded DNA polymer of this composition.  相似文献   

4.
Optimum conditions have been established for isolation of ‘cryptic’ satellite DNA from the genome of pea (Pisum sativum), using gradients of CS2SO4 containing silver ions. At an Ag+ :DNA-P ratio (R) of 0.1, and at alkaline pH, four fractions are obtained: mainband (buoyant density 1.437 g cm3; 67% of total DNA), satellite I (buoyant density 1.582 g/cm3; 7% of total DNA), satellite II (buoyant density 1.520 g/cm3, 11% of total) and satellite III (buoyant density variable between 1.45 and 1.51 g/cm3; 15% of total). The reiterated DNA content of these four fractions has been investigated by reassociation experiments conducted over a Cot range of 1 × 10?5 to 2.0. All four fractions contain at least two kinetic components; each fraction, including the mainband, consists at least partly of highly reiterated DNA. Ribosomal RNA hybridizes only to the mainband.  相似文献   

5.
1. Chloroplasts and mitochondria were isolated by aqueous and non-aqueous cell-fractionation techniques. In a variety of higher plants the mitochondrial DNA bands in a caesium chloride gradient at 1.706g.cm.(-3), whereas chloroplastal DNA has a buoyant density of 1.697g.cm.(-3). 2. In total cellular DNA of moderate molecular weight, the chloroplastal DNA is found within the Gaussian distribution of the nuclear DNA and is not resolved as a satellite. 3. Both chloroplastal DNA and mitochondrial DNA from lettuce renature rapidly. 4. The kinetic complexity of mitochondrial DNA is > 10(8) daltons. 5. Chloroplastal DNA is made up from fast and slow renaturing sequences with kinetic complexities of 3x10(6) and 1.2x10(8) daltons respectively. 6. From the discrepancy between analytical and kinetic complexity it is concluded that chloroplastal DNA is extensively reiterated.  相似文献   

6.
The approximate sizes of heterogeneous nuclear (HnRNA) and cytoplasmic RNA of sea urchin embryos were determined by DMSO density gradient centrifugation and acrylamide-formamide gel electrophoresis. The data suggest that the sizes of these molecules are smaller than those estimated under nondenaturing conditions. The size of most of the nuclear RNA ranges from 0.5 to 3 × 106 daltons, while that of the cytoplasmic RNA ranges from 0.1 to 2 × 106 daltons. Both nuclear and cytoplasmic RNA of sea urchin embryos may have a minor fraction (5–10%) of very large species with molecular weights up to 4 to 5 × 106 daltons.The idea that the size of HnRNA may be larger in organisms higher on the evolutionary scale is discussed.  相似文献   

7.
The karyotype of Drosophila nasutoides reveals a very large autosome pair at the metaphase plate. The application of the C-banding technique shows that this chromosome is almost entirely heterochromatic and an isochromosome (Cordeiro et al., 1975). Examination of the DNA isolated from purified nuclei of D. nasutoides in neutral CsCl gradients reveals four major satellites. As much as 60% of the total DNA appears as satellites in the DNA from larval brains. The buoyant densities of the four satellites, designated as I through IV in the order of descending density, are 1.687, 1.682, 1.669 and 1.665 g/cm3, respectively. All four satellites show strand separations in alkaline CsCl gradients with the least separation in satellite III. Thermal denaturation studies with purified native satellites show that satellites I and IV consist of repeats of identical sequences, whereas satellites II and III show a large sequence variation between repeating units. As much as 10 to 24% base-pair mis-matching is observed in the reassociated satellite II. The sequence complexities obtained from DNA reassociation kinetics data are 5, 103, 2.3 × 106 and 46 nucleotide pairs for the satellites I, II, III and IV, respectively. The complexity of satellite III is almost as large as that of Escherichia coli, when the reassociation rate is corrected according to the amount of mis-matching in this satellite. All four satellite sequences are localized in one chromosome (dot chromosome) according to in situ hybridizations to polytene chromosomes. The large heterochromatic chromosome seen at the metaphase plate appears as the dot chromosome after polytenization. Therefore, the large heterochromatic chromosome contains all four satellite DNA components.  相似文献   

8.
9.
Redundant DNA of Neurospora crassa   总被引:4,自引:0,他引:4  
Approximately 20% of the DNA of Neurospora crassa consists of redundant sequences. This is calculated from the reassociation rate of fragmented, denatured DNA as measured by hydroxyapatite column chromatography. The redundant DNA has a complexity of 105 base pairs and a repetition frequency of up to 60 copies per genome. Its buoyant density in CsCl is 1.720 g/ml and its hypochromicity 20–24%. Base composition determination shows 54% GC content like Neurospora nuclear DNA. DNA-RNA hybridization studies indicate that rRNA and tRNA cistrons make up 2.3 and 1.2%, respectively, of the redundant fraction. Pulse-labeled RNA is shown to hybridize with both redundant and unique DNA fractions, suggesting that both fractions are transcribed.This work is supported by a grant from National Science Foundation (GB 8058) and National Institute of Health Research Career Development Award (K3GM31-238).  相似文献   

10.
The ribosomal cistrons of the water mold Achlya bisexualis   总被引:2,自引:0,他引:2  
Total DNA was extracted from vegatative mycelia of the water mold Achlya bisexualis. Fractionation of the DNA in CsCl gradients resulted in two components: a major component with a buoyant density of 1.697 g cm?3 and a minor component with a density of 1.685 g cm?3. The minor component has been identified as mitochondrial DNA based on extractions from isolated mitochondria and Triton X-100 washed nuclei. Detergent washing of the nuclei yielded DNA in which the mitochondrial DNA component was absent, while the isolated mitochondrial preparations contained DNA enriched in the 1.685 g cm?3 component. Hybridization studies of A. bisexualis DNA to rRNA show that the ribosomal cistrons have a buoyant density coincident with that obtained with the nuclear DNA. In addition, preliminary evidence indicates that the mitochondrial DNA does not hybridize to the cytoplasmic RNA under the conditions used for this study. Ribosomal RNA hybridized to about 0.65% of the total DNA.  相似文献   

11.
Allomyces arbuscula DNA isolated from whole cells (bulk DNA) is composed of a major (alpha) and two minor components (beta & gamma) with buoyant densities in neutral CsCl corresponding to 1.721, 1.710 and 1.702 g/cm3, respectively. The DNA obtained from purified nuclei contains alpha component only. The beta component corresponds to mitochondrial DNA. The gamma component is also extra-nuclear but has not been characterized. The reassociation kinetics of sheared, bulk and nuclear DNA show that (i) 25 % bulk and 10% of nuclear DNA reanneal very rapidly and contain highly repeated sequences; (ii) moderately repeated sequences, accounting for 15% of both bulk and nuclear DNA, have a sequence complexity of approximately 7.2-10(6) daltons and are repeated about 320 times; (iii) the slow reannealing fraction accounts for about 60% of the genome and has kinetic properties similar to single copy sequences. The sequence complexity of this fraction was determined in relation to that of Escherichia coli. After a correction for the size of the repeated sequences the genome size of A. arbuscula was calculated to be 1.7-10(10) daltons.  相似文献   

12.
Location of Satellite and Homogeneous DNA Sequences on Human Chromosomes   总被引:15,自引:0,他引:15  
HUMAN DNA1,2 contains at least two satellite fractions—satellite I (0.5% of the genome) which bands at a density of 1.687 g/cm3 in neutral CsCl and satellite II (2% of the genome) which bands at 1.693 g/cm3. The main band DNA has an average buoyant density between 1.670 and 1.720 g/cm3 and a light shoulder (constituting 15% of the genome) with a buoyant density of 1.696 g/cm3, referred to as homogeneous mainband. Satellite DNA has been observed in many higher organisms3, usually with an unknown function, notable exceptions being cistrons coding for ribosomal RNA4 and the DNA coding for histone messenger RNA5. To investigate possible functions of human repetitive DNA we have studied the annealing of complementary RNA fractions to chromosomes using in situ hybridization6,7. We describe here preliminary observations using human satellite II and homogeneous mainband fractions.  相似文献   

13.
We have used limited nuclease digestion of nuclei to probe the structure of nuclear ribonucleoprotein (nRNP). Analysis of [3H]uridine-labeled heterogeneous nuclear RNA isolated from nuclease digested nuclei revealed preferential generation of discrete bands of RNA ranging in size from 1.5 × 105 to 6 × 105 daltons. The nuclease digestion pattern of nRNP differed from the nuclease digestion pattern obtained with chromatin in that the RNA bands generated in these experiments were transient, appearing only early in the course of digestion, and no stable nRNP monomer size was evident. Therefore, although nRNP may be organized in a regular configuration, nRNP structure differs considerably from the repeating subunit structure of chromatin.  相似文献   

14.
The genome of the cellular slime mold Dictyostelium discoideum has been analyzed by limit digestion with EcoR1 restriction endonuclease. Approximately 15% of the nuclear genome is cleaved into nine discrete fragments as analyzed by agarose gel electrophoresis. These fragments appear to be derived from two nuclear buoyant density satellites, one of which contains sequences coding for ribosomal RNA. The bulk of the nuclear DNA is digested into approximately 7000 fragments with a mean molecular weight of 4 × 106 to 5 × 106. The mitochondrial DNA is digested into four fragments. One of the nuclear bands has been cloned in Escherichia coli using plasmid pSC101 carrying tetracyline resistance. Analysis by renaturation kinetics indicates that it is repeated approximately 200 times per haploid genome and that it is not internally repeated.  相似文献   

15.
The restriction endonuclease map of the 25 S and 18 S ribosomal RNA genes of a higher plant is presented. Soybean (Glycine max) rDNA was enriched by preparative buoyant density centrifugation in CsCl-actinomycin D gradients. The buoyant density of the rDNA was determined to be 1.6988 g cm–3 by analytical centrifugation in CsCl. Saturation hybridization showed that 0.1% of the total DNA contains 25 S and 18 S rRNA coding sequences. This is equivalent to 800 rRNA genes per haploid genome (DNA content: 1.29 pg) or 3200 for the tetraploid genome. Restriction endonuclease mapping was performed with Bam H I, Hind III, Eco R I, and BstI. The repeating unit of the soybean ribosomal DNA has a molecular weight of 5.9·106 or approximately 9,000 kb. The 25 S and 18 S rRNA coding sequences were localized within the restriction map of the repeating unit by specific hybridization with either [125I]25 S or [125I]18 S rRNA. It was demonstrated that there is no heterogeneity even in the spacer region of the soybean rDNA.  相似文献   

16.
5 S DNAs of Xenopus laevis and Xenopus mulleri: evolution of a gene family   总被引:15,自引:0,他引:15  
The 5 S DNA which contains the genes for 5 S RNA has been purified from the frog Xenopus mulleri and compared with the 5 S DNA of Xenopus laevis. Both DNAs contain highly repetitive sequences in which the gene sequence that codes for 5 S RNA alternates with a spacer sequence. The 5 S DNAs of X. laevis and X. mulleri comprise about 0.7% of the total DNA or about 24,000 and 9000 repeating sequences, respectively. The average repeat length within native X. laevis and X. mulleri 5 S DNA is about 0.5 to 0.6 and 1.2 to 1.5 × 106 daltons, respectively, each repeat of which contains a single gene sequence for 5 S RNA (0.08 × 106 daltons). The two DNAs differ in the average length of their spacers and no cross homology can be detected by heterologous hybridization of the two DNAs, except within the 5 S RNA gene regions. Despite their differences, the spacer sequences of X. laevis and X. mulleri 5 S DNA resemble each other enough to conclude that they have diverged from a common ancestral sequence.The multiple repeating sequences of 5 S DNA in each species have evolved as a family of similar, but not identical sequences. It is known that 5 S DNA is located at the ends (telomeres) of the long arms of most, if not all, X. laevis chromosomes. It is proposed that multiple gene sequences located on the ends of many chromosomes can evolve together as a family if there is extensive and unequal exchange of DNA sequences between homologous and non-homologous chromosomes at their ends.  相似文献   

17.
Summary The composition and synthesis of DNA in synchronous cultures of Chlorella pyrenoidosa strain 211/8b has been investigated. Analytical CsCl density gradient centrifugation gave a homogenous major DNA component with a (G+C) content of 51% and a minor component containing 28% (G+C). The (G+C) contents derived from melting profiles were 2–3% lower. A second minor component with approximately 41% (G+C) content was inferred from banding patterns of labelled DNA in preparative CsCl density gradients. 14C-uracil was readily incorporated into the pyrimidine moieties of the major (nuclear) DNA between the 10th and 18th hour after beginning of the light period, but not at any other time. 14C-uracil incorporation into the minor (satellite) component was low but continuous throughout the whole cell cycle. The incorporation is correlated with an increase in the proportion of satellite DNA from 6% up to 20% during the time when no nuclear DNA replication takes place. The results suggest that different regulatory mechanisms exist for the nuclear and for satellite DNA synthesis.  相似文献   

18.
Heterogeneity of the ribosomal RNA gene clusters in rice   总被引:1,自引:0,他引:1  
A discrete heterogeneity has been observed in rice rRNA gene clusters after EcoRI digestion of rice nuclear DNA followed by Southern image hybridization. EcoRI digestion generates the two repeating sequences, 5.0×106 and 5.2×106 daltons, which code for both 25S and 17S rice rRNA.  相似文献   

19.
Based on protein, deoxyribonucleic acid (DNA), and phosphorus analyses, adeno-associated satellite virus type 4 has a DNA content of 26.5%, significantly larger than type 1 which contains 18.9% DNA. Type 4 DNA contains 58 to 62% guanine + cytosine, as calculated from thermal denaturation temperature and buoyant density measurements. Simian adenovirus SV15, which serves as a helper virus for type 4 satellite, contains 13.7% DNA with a guanine + cytosine content of 55 to 57%. The DNA extracted from type 4 satellite virus is a linear, double-stranded molecule, as shown by thermal denaturation temperature profile measurements and by electron microscopy. The contour length and sedimentation coefficient of type 4 DNA indicate a molecular weight of 3.0 x 10(6) daltons.  相似文献   

20.
Characterization of segmented double-helical RNA from bacteriophage phi6   总被引:25,自引:0,他引:25  
The nucleic acid component of bacteriophage φ6 is characterized as a double stranded RNA molecule with a buoyant density of 1.605 g/cm3 and nucleotide composition of C, 27.3%; A, 21.8%; G, 28.9%; and U, 22.0%. The hyperchromicity profile in 0.1 × SSC (SSC is 0.15 m-NaCl, 0.015 m-sodium citrate) demonstrated a rapid increase with a Tm value of 91 °C. The nucleic acid was resistant to degradation by DNase, spleen phosphodiesterase and pancreatic RNase in 2 × SSC buffer but sensitive to degradation by venom phosphodiesterase, pancreatic RNase in 0.01 × SSC and hydrolysis in KOH. Three distinct double stranded RNA species of 2.2, 2.8 and 4.5 × 106 daltons were observed after rate zonal centrifugation, polyacrylamide gel electrophoresis and electron microscopy. This communication therefore presents data establishing a new class of double stranded RNA bacteriophage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号