首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary The gene of a cytoplasmic 18 S ribosomal RNA (18 S rDNA) of the dicotyledonous plant tomato (ycopersicon esculentum) cv. Rentita has been cloned, and its complete primary structure has been determined. The tomato 18 S rDNA is 1805 by long with a G+C content of 49.6%. Its sequence exhibits 94%–96% positional identity when it is colinearly aligned with the previously reported sequences of the 17–18 S rDNAs of the dicot soybean and the monocots maize and rice. A model of the secondary structure of the 18 S rRNA of angiosperms is presented and its genera-specific structural features are compared with a current eukaryotic 18 S rRNA consensus model.  相似文献   

3.
Summary DNA sequence analysis and the localization of the 5 and 3 termini by S1 mapping have shown that the mitochondrial (mt) small subunit rRNA coding region fromPodospora anserina is 1980 bp in length. The analogous coding region for mt rRNA is 1962 bp in maize, 1686 bp inSaccharomyces cerevisiae, and 956 bp in mammals, whereas its counterpart inEscherichia coli is 1542 bp. TheP. anserina mt 16S-like rRNA is 400 bases longer than that fromE. coli, but can be folded into a similar secondary structure. The additional bases appear to be clustered at specific locations, including extensions at the 5 and 3 termini. Comparison with secondary structure diagrams of 16S-like RNAs from several organisms allowed us to specify highly conserved and variable regions of this gene. Phylogenetic tree construction indicated that this gene is grouped with other mitochondrial genes, but most closely, as expected, with the fungal mitochondrial genes.  相似文献   

4.
The nucleotide sequence of an 8 kbp region of pea ( Pisum sativum L.) chloroplast DNA containing the rRNA operon and putative promoter sites has been determined and compared to the corresponding sequences from maize, tobacco and the liverwort Marchantia polymorpha . The chloroplast DNA species of all vascular plants investigated, with the exception of a few legumes including pea, and of Marchantia contain an inverted repeat with an rRNA operon. The pea rRNA operon is the first sequenced rRNA operon from a plant with only one copy of the rRNA genes per molecule of chloroplast DNA. The organization of the operon is the same as for maize, tobacco and Marchantia . i.e. tRNA-Val gene/16S rRNA gene/spacer with intron-containing genes for tRNA-Ile and tRNA-Ala/23S rRNA gene/4.5S rRNA gene/5S rRNA gene. Current evidence suggests that the tRNA-Val gene may not be contranscribed with the other genes. For pea 16S, 23S, 4.5S and 5S rRNA have 1488, 2813, 105 and 121 nucleotides, respectively. The homologies of the entire operon (the tRNA-Val gene - 5S rRNA region) to those from tobacco, maize and Marchantia are 88, 82 and 79%, respectively. The corresponding homologies for tobacco/maize, tobacco/ Marchantia and maize/ Marchantia have similar values. The 16S and 23S rRNA genes from pea are more than 90% homologous to those from the 3 other species. We conclude that the fact that pea only has one set of rRNA genes per molecule of chloroplast DNA is apparently not correlated with any significant difference between the pea operon and the rRNA operons from tobacco, maize and Marchantia .  相似文献   

5.
Summary The complete sequence of the 5S rRNA from the bioluminescent bacterium,Beneckea harveyi has been determined to be p U G C U U G G C G C C A U A G C G A U U-G G A C C C A C U G A (U) C U U C A U U C C-G A A C C A G A A G U G A A C G A A U U A-G G C C G A U G G U G U G U G G G G C U-C C C C A U G U A G A G U A G G A A U C G-C C A G G U (U)OH.Two sites of sensitivity to ribonuclease T2 cleavage were identified; at A41 and either A54 or A55. Comparison with existing sequence information fromEscherichia coli andPhotobacterium phosphoreum clarifies the amount of diversity among the bioluminescent bacteria and provides further insight into their phylogenetic position. Sequence heterogeneities were encountered and the importance of these in interpreting 5S rRNA data is discussed.  相似文献   

6.
One of the four ribosomal RNA operons (rrnA) from theAgrobacterium vitis vitopine strain S4 was sequenced.rrnA is most closely related to therrn operons ofBradyrhizobium japonicum andRhodobacter sphaeroides and carries an fMet-tRNA gene downstream of its 5S gene, as in the case ofR. sphaeroides. The 16S rRNA sequence of S4 differs from theA. vitis K309 type strain sequence by only one nucleotide, in spite of the fact that S4 and K309 have very different Ti plasmids. The predicted secondary structure of the S4 23S rRNA shows several features that are specific for the alpha proteobacteria, and an unusual branched structure in the universal B8 stem. The 3 ends of the three otherrrn copies of S4 were also cloned and sequenced. Sequence comparison delimits the 3 ends of the four repeats and defines two groups:rrnA/rrnB andrrnC/rrnD.  相似文献   

7.
8.
Summary DNA sequence analysis has shown that the gene coding for the mitochondrial (mt) large subunit ribosomal RNA (rRNA) fromPodospora anserina is interrupted by two class I introns. The coding region for the large subunit rRNA itself is 3715 bp and the two introns are 1544 (r1) and 2404 (r2) bp in length. Secondary structure models for the large subunit rRNA were constructed and compared with the equivalent structure fromEscherichia coli 23S rRNA. The two structures were remarkably similar despite an 800-base difference in length. The additional bases in theP. anserina rRNA appear to be mostly in unstructured regions in the 3 part of the RNA. Secondary structure models for the two introns show striking similarities with each other as well as with the intron models from the equivalent introns inSaccharomyces cerevisiae, Neurospora crassa, andAspergillus nidulans. The long open reading frames in each intron are different from each other, however, and the nucleotide sequence similarity diverges as it proceeds away from the core structure. Each intron is located within regions of the large subunit rRNA gene that are highly conserved in both sequence and structure. Computer analysis showed that the open reading frame for intron r1 contained a common maturase-like polypeptide. The open reading frames of intron r2 apeared to be chimeric, displaying high sequence similarity with the open reading frames in the r1 and ATPase 6 introns ofN. crassa.  相似文献   

9.
Summary The sequence of the large subunit ribosomal RNA (LsuRNA) gene of the dinoflagellateProrocentrum micans has been determined. The inferred rRNA sequence [3408 nucleotides (nt)] is presented in its most probable secondary structure based on compensatory mutations, energy, and conservation criteria. No introns have been found but a hidden break is present in the second variable domain, 690 nt from the 5 end, as judged by agarose gel electrophoresis and primer extension experiments.Prorocentrum micans LsuRNA length and G+C content are close to those of ciliates and yeast. The conserved portions of the molecule (1900 nt) have been aligned with corresponding sequences from various eukaryotes, including five protista, one metaphyta, and three metazoa. An extensive phylogenetic study was performed, comparing two phenetic methods (neighbor joining on difference matrix, and Fitch and Margoliash on Knuc values matrix) and one cladistic (parsimony). The three methods led to similar tree topologies, except for the emergence of yeast that groups with ciliates and dinoflagellates when phenetic methods are used, but emerges later in the most parsimonious tree. This discrepancy was checked by statistical analyses on reduced trees (limited to four species) inferred using parsimony and evolutionary parsimony methods. The data support the phenetic tree topologies and a close relationship between dinoflagellates, ciliates, and yeast.  相似文献   

10.
We compare the 5S gene structure from nine Drosophila species. New sequence data (5S genes of D. melanogaster, D. mauritiana, D. sechellia, D. yakuba, D. erecta, D. orena, and D. takahashii) and already-published data (5S genes of D. melanogaster, D. simulans, and D. teissieri) are used in these comparisons. We show that four regions within the Drosophila 5S genes display distinct rates of evolution: the coding region (120 bp), the 5-flanking region (54–55 bp), the 3-flanking region (21–22 bp), and the internal spacer (149–206 bp). Intra- and interspecific heterogeneity is due mainly to insertions and deletions of 6–17-bp oligomers. These small rearrangements could be generated by fork slippages during replication and could produce rapid sequence divergence in a limited number of steps. Correspondence to: M. Wegnez  相似文献   

11.
Two regions of the ribosomal DNA (rDNA) were sequenced from a range of species from the tribeTriticeae. One region, the central spacer, was found to be more divergent in sequence than the other, the 18 S-spacer junction. Both regions contained sequences 20–30 bp long which were more highly conserved than the remainder of the region and their possible significance in rDNA expression is discussed. Phenetic relationships based on the sequence data were generally consistent with the relationships based on other criteria. Species possessing the S, E, J1J2, D, and B genomes clustered together, with the H genome species being the most distinct of those examined. The R, P, and V genome species occupy an intermediate position in the overall pattern of relationships. Some relationships differed in detail from those established by other parameters, for example the position of the N genome species, and explanations for discrepancies of this type are discussed.  相似文献   

12.
Summary The glutamine permease operon encoding the high-affinity transport system of glutamine in Escherichia coli could be cloned in one of the mini F plasmids, but not in pBR322 or pACYC184, by selection for restoration of the Gln+ phenotype, the ability to utilize glutamine as a sole carbon source. We determined the nucleotide sequence of the glutamine permease operon, which contains the structural gene of the periplasmic glutamine-binding protein (glnH), an indispensable component of the permease activity. The N-terminal amino acid sequence and the overall amino acid composition of the purified glutamine-binding protein were in good agreement with those predicted from the nucleotide sequence, if the N-terminal 22 amino acid residues were discounted. The latter comprised two Lys residues (nos. 2 and 6) followed by 16 hydrophobic amino acid residues and was assumed to be a signal peptide for transport into the periplasmic space. There were two additional reading frames (glnP and glnQ) downstream of glnH sharing a common promoter. It was concluded that the glnP and glnQ proteins as well as the glnH protein are essential for glutamine permease activity.  相似文献   

13.
14.
The nucleotide sequences of the internal transcribed spacers (ITS1 and ITS2) of the nuclear ribosomal DNA were analyzed in species belonging to gymnosperms and pteridophytes. The lengths of the ITSs of sixteen species of gymnosperms and seven species of pteridophytes were estimated. The gymnosperms have ITS1 regions larger than those observed in the pteridophytes and angiosperms (ca. 610–3100 bp versus 159–360 bp). On the other hand, the ITS2 regions appear to be of a conserved length (182–370 bp). We have determined the complete nucleotide sequences of ITS regions from four gymnosperm species and five pteridophyte species by cloning the PCR products. Sequence analysis showed the presence of three short tandem arranged subrepeats of about 70 bp in the 1112 bp ITS1 ofEphedra fragilis. Pyrimidine rich (about 90%) DNA segments of 40–50 bp were observed in the ITS1 ofGinkgo biloba. A highly conserved 16 bp long sequence known to be present in the ITS1 of the angiosperm species has been also found in the ITS1 ofCycas revoluta, Taxus baccata andEphedra fragilis. Dedicated to Prof.Emilio Battaglia.  相似文献   

15.
One hundred and fourMalassezia strains (52 isolated from humans and 52 from animals) were compared using large subunit (LSU) ribosomal RNA sequence similarity and nuclear DNA complementarity. Eight groups of strains were recognized as genetically distinct species. Each taxon was confirmed by a homogeneous mole % GC and percentages of DNA/DNA reassociations higher than 85%. The non-lipid-dependentMalassezia yeasts were maintained as the unique taxonM. pachydermatis. In contrast, lipid-dependent strains were shown to be distributed among seven species:M. furfur, M. sympodialis andM. species 1–5. These taxa matched remarkably well with morphological and serological differences documented by previous investigators. The LSU rRNA sequences allowed a further intraspecific resolution with most of genomic taxa represented by several closely related sequences:M. pachydermatis counted up to seven sequences,M. furfur four sequences,M. species 1 comprised three sequences andM. species 2 andM. species 5 two sequences. Three species,M. sympodialis, M. species 3 andM. species 4, displayed a unique type of sequence. Thus, the present report demonstrates the usefulness of sequencing for both taxonomic and epidemiological purposes.  相似文献   

16.
17.
Summary The nucleotide sequences of the ribosomal protein genesrps18, rps19, rpl2, rpl33, and partial sequence ofrpl22 from cyanelles, the photosynthetic organelles of the protistCyanophora paradoxa, have been determined. These genes form two clusters oriented in opposite and divergent directions. One cluster contains therpl33 andrps18 genes; the other contains therpl2, rps19, andrpl22 genes, in that order. Phylogenetic trees were constructed from both the DNA sequences and the deduced protein sequences of cyanelles,Euglena gracilis and land plant chloroplasts, andEscherichia coli, using parsimony or maximum likelihood methods. In addition, a phylogenetic tree was built from a distance matrix comparing the number of nucleotide substitutions per site. The phylogeny inferred from all these methods suggests that cyanelles fall within the chloroplast line of evolution and that the evolutionary distances between cyanelles and land plant chloroplasts are shorter than betweenE. gracilis chloroplasts and land plant chloroplasts.  相似文献   

18.
19.
20.
Abstract DNA sequencing of the gene encoding a Brucella melitensis 12-kDa protein revealed that this protein was the ribosomal protein L7/L12. The B. melitensis L7/L12 DNA sequence was identical to that of the corresponding B. abortus gene, showing the near identity of these two organisms. When comparing the sequence of this protein to that of other organisms some domains were highly conserved, especially the C-terminus, which contrasted with the lack of conservation of the sequences at the N-terminus. The finding that the ribosomal protein L7/L12 of Brucella is an immunodominant antigen provides a new rationale to explain the activity of ribosomal vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号