首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sleep alterations after a 1-min exposure to ether vapor were studied in rats to determine if this stressor increases rapid eye-movement (REM) sleep as does an immobilization stressor. Ether exposure before light onset or dark onset was followed by significant increases in REM sleep starting approximately 3-4 h later and lasting for several hours. Non-REM (NREM) sleep and electroencephalographic slow-wave activity during NREM sleep were not altered. Exposure to ether vapor elicited prolactin (Prl) secretion. REM sleep was not promoted after ether exposure in hypophysectomized rats. If the hypophysectomy was partial and the rats secreted Prl after ether exposure, then increases in REM sleep were observed. Intracerebroventricular administration of an antiserum to Prl decreased spontaneous REM sleep and inhibited ether exposure-induced REM sleep. The results indicate that a brief exposure to ether vapor is followed by increases in REM sleep if the Prl response associated with stress is unimpaired. This suggests that Prl, which is a previously documented REM sleep-promoting hormone, may contribute to the stimulation of REM sleep after ether exposure.  相似文献   

2.
Aging is associated with a dramatic decrease in sleep intensity and continuity. The selective GABA(A) receptor agonist gaboxadol has been shown to increase non-REM sleep and the duration of the non-REM episodes in rats and sleep efficiency in young subjects and to enhance low-frequency activity in the electroencephalogram (EEG) within non-REM sleep in both rats and humans. In this double-blind, placebo-controlled study, we investigated the influence of an oral dose of 15 mg of gaboxadol on nocturnal sleep and hormone secretion (ACTH, cortisol, prolactin, growth hormone) in 10 healthy elderly subjects (6 women). Compared with placebo, gaboxadol did not affect endocrine activity but significantly reduced perceived sleep latency, elevated self-estimated total sleep time, and increased sleep efficiency by decreasing intermittent wakefulness and powerfully augmented low-frequency activity in the EEG within non-REM sleep. These findings indicate that gaboxadol is able to increase sleep consolidation and non-REM sleep intensity, without disrupting REM sleep, in elderly individuals and that these effects are not mediated by a modulation of hormone secretion.  相似文献   

3.
Serum and cerebrospinal fluid (CSF) prolactin (PRL) concentrations were determined in fourteen patients of both sexes suffering from hydrocephalus, in basal conditions and after i.m. administration of 10 mg metoclopramide or 10 mg morphine. A significant increase in both serum and CSF hormone values was found after administration of both drugs. Serum and CSF PRL values after metoclopramide administration increased earlier and to a greater extent than after morphine. Furthermore, the metoclopramide induced CSF PRL increase immediately followed the serum peak, whereas after morphine administration an evident delay in the CSF hormone peak with respect to the serum increase was found. These data suggest that PRL entry in the CSF compartment is subject to a controlling mechanism which acts at the blood/brain barrier.  相似文献   

4.
Both the pineal nonapeptide hormone arginine vasotocin (AVT) (2.5 μg) administered intra-nasally and the pineal indole melatonin (50 mg) administered intravenously to three male narcoleptics (two with auxiliary symptoms and one with sleep attacks only), dramatically increased the amount of REM sleep and decreased REM sleep latency. The duration of the sleep onset REM periods in the two narcoleptics with auxiliary symptoms increased by more than 100 percent after AVT and melatonin administration. In the narcoleptic with sleep attacks only both AVT and melatonin induced REM periods at sleep onset. The hypothesis is advanced that narcolepsy represents an impairment of the melatonin-AVT control in the induction and circadian organization of REM sleep associated with an immaturity of REM triggering centers.  相似文献   

5.
The effect of administration of estradiol benzoate on beta-adrenergic receptors of rat adenohypophyseal cells was studied. Twenty days' administration of estradiol benzoate was followed by an increase of adenohypophyseal weight and a decrease in specific binding of 3H-dihydroalprenolol (3H-DHA). In contrast to thyroid hormone treatment which induced an increase in 3H-DHA binding, thyroid hormone treatment decreased both the growth reaction and the reaction of beta-adrenergic receptors after estradiol. Although the relationship between the adenohypophyseal receptors and the growth reaction is unclear, changes in beta-adrenergic receptors after hormonal therapy can be one of pathophysiological conditions that may influence this reaction.  相似文献   

6.
Both the pineal nonapeptide hormone arginine vasotocin (AVT) (2.5 μg) administered intra-nasally and the pineal indole melatonin (50 mg) administered intravenously to three male narcoleptics (two with auxiliary symptoms and one with sleep attacks only), dramatically increased the amount of REM sleep and decreased REM sleep latency. The duration of the sleep onset REM periods in the two narcoleptics with auxiliary symptoms increased by more than 100 percent after AVT and melatonin administration. In the narcoleptic with sleep attacks only both AVT and melatonin induced REM periods at sleep onset. The hypothesis is advanced that narcolepsy represents an impairment of the melatonin-AVT control in the induction and circadian organization of REM sleep associated with an immaturity of REM triggering centers.  相似文献   

7.
ABSTRACT

Despite research indicating that sleep disorders influence reproductive health, the effects of sleep on reproductive hormone concentrations are poorly characterized. We prospectively followed 259 regularly menstruating women across one to two menstrual cycles (the BioCycle Study, 2005–2007), measuring fasting serum hormone concentrations up to eight times per cycle. Women provided information about daily sleep in diaries and chronotype and night/shift work on a baseline questionnaire. We evaluated percent differences in mean hormone concentrations, the magnitude of shifts in the timing and amplitude of hormone peaks, and the risk for sporadic anovulation associated with self-reported sleep patterns and night/shift work. We estimated chronotype scores – categorizing women below and above the interquartile range (IQR) as “morning” and “evening” chronotypes, respectively. For every hour increase in daily sleep duration, mean estradiol concentrations increased by 3.9% (95% confidence interval [CI] 2.0, 5.9%) and luteal phase progesterone by 9.4% (CI 4.0, 15.2%). Receiving less than 7 hours of sleep per day was associated with slightly earlier rises in peak levels for several hormones. Women reporting night/shift work (n = 77) had lower testosterone relative to women employed without night/shift work (percent difference: ?9.9%, CI ?18.4, ?0.4%). Women with morning chronotypes (n = 47) had earlier rises in estradiol during their cycles and potentially an earlier rise in luteinizing hormone. Compared to those who had intermediate chronotypes, women with evening chronotypes (n = 42) had a later luteinizing hormone peak of borderline statistical significance. A reduced risk for sporadic anovulation was suggested, but imprecise, for increasing hours of daily sleep leading up to ovulation (risk ratio 0.79, CI 0.59, 1.06), while an imprecise increased risk was observed for women with morning chronotypes (risk ratio 2.50, CI 0.93, 6.77). Sleep-related hormonal changes may not greatly alter ovarian function in healthy women, but have the potential to influence gynecologic health.  相似文献   

8.
Mendelson WB 《Life sciences》2002,71(17):2067-2070
A wide variety of hypnotic compounds including triazolam, pentobarbital, ethanol and adenosine have been reported to enhance sleep when microinjected into the medial preoptic area (MPA) of the anterior hypothalamus of the rat. It is uncertain whether the pineal hormone melatonin, which may alter sleep/wake physiology in mammals, acts at this site. A previous report has indicated that a more widespread injection of melatonin into the hypothalamus of the cat induces sleep. In the present study we have examined the possibility that the MPA may mediate this effect. Nine adult rats were microinjected with melatonin 1 and 50 ug and vehicle into the MPA during the daytime in a repeated measures design study. It was found that melatonin increased total sleep time in a dose-dependent manner, primarily by increasing NREM sleep, and that wake time after sleep onset was significantly reduced. These data add melatonin to the growing list of compounds that increase total sleep after administration into the MPA, and suggest that the MPA may be a common site of action for such agents from a variety of pharmacologic classes. Based on previous studies, the possibility is raised that this sleep enhancement results from an alteration in function of the GABA(A)-benzodiazepine receptor complex.  相似文献   

9.
Intravenous sodium cyanide (NaCN) administration lowers ventral medullary surface (VMS) activity in anesthetized cats. Sleep states modify spontaneous and blood pressure-evoked VMS activity and may alter VMS responses to chemoreceptor input. We studied VMS activation during peripheral chemoreceptor stimulation by intravenous NaCN using optical procedures in six cats instrumented for recording sleep physiology during sham saline and control site trials. Images of scattered 660-nm light were collected at 50 frames/s with an optical device after 80-100 microg total bolus intravenous NaCN delivery during waking and sleep states. Cyanide elicited an initial ventilatory decline, followed by large inspiratory efforts and an increase in respiratory rate, except in rapid eye movement sleep, in which an initial breathing increase occurred. NaCN evoked a pronounced decrease in VMS activity in all states; control sites and sham injections showed little effect. The activity decline was faster in rapid eye movement sleep, and the activity nadir occurred later in waking. Sleep states alter the time course but not the extent of decline in VMS activity.  相似文献   

10.
Single and chronic administration of a low dose of nitrazepam (1 mg/kg) had no effect on sleep cycles in rats. A single injection of a high dose (10 mg/kg) of nitrazepam resulted in prolongation of the total duration of synchronized sleep with a corresponding shortening of desynchronized (paradoxical) sleep. The number of sleep cycles was reduced. Chronic injections of nitrazepam (for 7-14 days) in a dose of 10 mg/kg evoked a gradual prolongation of the duration of paradoxical sleep and an increase in number of sleep cycles. After discontinuance of a long-term administration of nitrazepam (1 mg/kg or 10 mg/kg) prolongation of desynchronized sleep and an increase in the number of sleep cycles were more pronounced in comparison with the last day of chronic administration of the drug.  相似文献   

11.
There is increasing evidence that men have higher ventilatory responses to chemical stimuli than age-matched women and that certain disorders of respiratory rhythmicity, particularly sleep apnea, occur more commonly in men. Accordingly, we studied the influence of the male hormone, testosterone, on the control of breathing. Twelve hypogonadal males were studied at least 30 (mean +/- SE: 69.7 +/- 8.9) days after discontinuing testosterone replacement and again following hormone administration. In each subject plasma testosterone concentration, metabolic rate [O2 consumption (VO2) and CO2 production (VCO2)], minute ventilation (VE), and chemosensitivity [hypoxic (HVR) and hypercapnic (HCVR) ventilatory responses] were determined on and off hormone replacement. With testosterone administration VO2 increased from 248 +/- 15 to 276 +/- 18 ml/min (P less than 0.05), with VCO2 showing a similar but nonsignificant trend. This was associated with an increase in VE from 8.41 +/- 0.78 to 9.91 +/- 0.75 l/min (P less than 0.05) but no change in PCO2. The HVR, expressed as A, increased 44% with hormone replacement from a value of 122 +/- 23 to 176 +/- 28 (P less than 0.01), whereas the HCVR was minimally affected by testosterone administration. These findings may in part explain the previously described differences between male and female subjects in hypoxic sensitivity.  相似文献   

12.
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor, has been shown to promote slow-wave sleep (SWS, non-REM sleep stages 3 and 4). Plasma levels of ghrelin are dependent on food intake and increase in sleeping subjects during the early part of the night. It is unknown whether sleep itself affects ghrelin levels or whether circadian networks are involved. Therefore, we studied the effect of sleep deprivation on nocturnal ghrelin secretion. In healthy male volunteers, plasma levels of ghrelin, cortisol, and human growth hormone (hGH) were measured during two experimental sessions of 24 h each: once when the subjects were allowed to sleep between 2300 and 0700 and once when they were kept awake throughout the night. During sleep, ghrelin levels increased during the early part of the night and decreased in the morning. This nocturnal increase was blunted during sleep deprivation, and ghrelin levels increased only slightly until the early morning. Ghrelin secretion during the first hours of sleep correlated positively with peak hGH concentrations. We conclude that the nocturnal increase in ghrelin levels is more likely to be caused by sleep-associated processes than by circadian influences. During the first hours of sleep, ghrelin might promote sleep-associated hGH secretion and contribute to the promotion of SWS.  相似文献   

13.
Serotonin is involved in many physiological processes, including the regulation of sleep and body temperature. Administration into rats of low doses (25, 50 mg/kg) of the 5-HT precursor l-5-hydroxytryptophan (5-HTP) at the beginning of the dark period of the 12:12-h light-dark cycle initially increases wakefulness. Higher doses (75, 100 mg/kg) increase nonrapid eye movement (NREM) sleep. The initial enhancement of wakefulness after low-dose 5-HTP administration may be a direct action of 5-HT in brain or due to 5-HT-induced activation of other arousal-promoting systems. One candidate arousal-promoting system is corticotropin-releasing hormone (CRH) and the hypothalamic-pituitary-adrenal axis. Serotonergic activation by 5-HTP at the beginning of the dark period also induces hypothermia. Because sleep and body temperature are influenced by circadian factors, one aim of this study was to determine responses to 5-HTP when administered at a different circadian time, the beginning of the light period. Results obtained show that all doses of 5-HTP (25-100 mg/kg) administered at light onset initially increase wakefulness; NREM sleep increases only after a long delay, during the subsequent dark period. Serotonergic activation by 5-HTP at light onset induces hypothermia, the time course of which is biphasic after higher doses (75, 100 mg/kg). Intracerebroventricular pretreatment with the CRH receptor antagonist alpha-helical CRH does not alter the impact of 5-HTP on sleep-wake behavior but potentiates the hypothermic response to 50 mg/kg 5-HTP. These data suggest that serotonergic activation by peripheral administration of 5-HTP may modulate sleep-wake behavior by mechanisms in addition to direct actions in brain and that circadian systems are important determinants of the impact of serotonergic activation on sleep and body temperature.  相似文献   

14.
The objectives of the investigation were to assess hypersomnia, which progressively appeared in a young patient after a pinealectomy, chemotherapy, and radiotherapy for a typical germinoma, as well as the potential benefit of melatonin administration in the absence of its endogenous secretion. 24 h ambulatory polysomnography and the Multiple Sleep Latency Test (MSLT) were performed; in addition, daily plasma melatonin, cortisol, growth hormone, prolactin, and rectal temperature profiles were determined before and during melatonin treatment (one 2 mg capsule given nightly at 21:00 h for 4 weeks). MSLT showed abnormal sleep latency and two REM sleep onsets. Nighttime total sleep duration was lengthened, mainly as a consequence of an increased REM sleep duration. These parameters were slightly modified by melatonin replacement. Plasma melatonin levels, which were constantly nil in the basal condition, were increased to supraphysiological values with melatonin treatment. The plasma cortisol profile showed nycthemeral variation within the normal range, and the growth hormone profile showed supplementary diurnal peaks. Melatonin treatment did not modify the secretion of either hormone. The plasma prolactin profile did not display a physiological nocturnal increase in the basal condition; however, it did during melatonin treatment, with the rise coinciding with the nocturnal peak of melatonin concentration. A 24 h temperature rhythm of normal amplitude was persistent, though the mean level was decreased and the rhythm was dampened during melatonin treatment. The role of radiotherapy on the studied parameters cannot be excluded; the findings of this case study suggest that the observed hypersomnia is not the result of melatonin deficiency alone. Overall, melatonin treatment was well tolerated, but the benefit on the sleep abnormality, especially on daytime REM sleep, was minor, requiring the re-introduction of modafinil treatment.  相似文献   

15.
The objectives of the investigation were to assess hypersomnia, which progressively appeared in a young patient after a pinealectomy, chemotherapy, and radiotherapy for a typical germinoma, as well as the potential benefit of melatonin administration in the absence of its endogenous secretion. 24 h ambulatory polysomnography and the Multiple Sleep Latency Test (MSLT) were performed; in addition, daily plasma melatonin, cortisol, growth hormone, prolactin, and rectal temperature profiles were determined before and during melatonin treatment (one 2 mg capsule given nightly at 21:00 h for 4 weeks). MSLT showed abnormal sleep latency and two REM sleep onsets. Nighttime total sleep duration was lengthened, mainly as a consequence of an increased REM sleep duration. These parameters were slightly modified by melatonin replacement. Plasma melatonin levels, which were constantly nil in the basal condition, were increased to supraphysiological values with melatonin treatment. The plasma cortisol profile showed nycthemeral variation within the normal range, and the growth hormone profile showed supplementary diurnal peaks. Melatonin treatment did not modify the secretion of either hormone. The plasma prolactin profile did not display a physiological nocturnal increase in the basal condition; however, it did during melatonin treatment, with the rise coinciding with the nocturnal peak of melatonin concentration. A 24 h temperature rhythm of normal amplitude was persistent, though the mean level was decreased and the rhythm was dampened during melatonin treatment. The role of radiotherapy on the studied parameters cannot be excluded; the findings of this case study suggest that the observed hypersomnia is not the result of melatonin deficiency alone. Overall, melatonin treatment was well tolerated, but the benefit on the sleep abnormality, especially on daytime REM sleep, was minor, requiring the re‐introduction of modafinil treatment.  相似文献   

16.
R. Goldstein 《Peptides》1984,5(1):25-28
In order to investigate the effects of the nonapeptide hormone arginine vasotocin (AVT) on the maturation of the brain, the following developmental data were tabulated between 5 and 21 days of postnatal life, in kittens, after the daily intraperitoneal administration of 10?6 mg synthetic AVT: sleep, daily increase of body weight and locomotor, and investigative activities (LIA). Likewise, the day of the eye opening was noted and the brain weight as well as the total lipid levels within the brain in the day of sacrifice (21 days of age) were measured. The daily administration of AVT induced: (1) an increase of the total amount as well as of the intensity of active sleep (AS); (2) a decrease of the LIA; (3) a decrease of the total lipid levels within the brain and (4) a retardation of the eye opening. These effects appeared to be specific because neither arginine vasopressin, nor oxytocin, in the same doses (10?6 mg), were able to reproduce the effects of AVT. The present results demonstrate that chronic administration of AVT is associated with a retardation of brain maturation. Whether AVT induces this effect by an unique mechanism or there are different mechanisms for the reported developmental data that were affected by AVT, is unknown. However, the present results suggest that the pineal gland, by its effector within the brain, AVT, is involved by an inhibitory pathway in the brain maturation and the hypothesis is advanced that the decrease of AVT content of fetal and neonatal brain could represent a hormonal signal for triggering the beginning of the brain maturation phenomena.  相似文献   

17.
Ghrelin, an endogenous ligand of the growth hormone (GH) secretagogue (GHS) receptor, stimulates GH release, appetite, and weight gain in humans and rodents. Synthetic GHSs modulate sleep electroencephalogram (EEG) and nocturnal hormone secretion. We studied the effect of 4 x 50 microg of ghrelin administered hourly as intravenous boluses between 2200 and 0100 on sleep EEG and the secretion of plasma GH, ACTH, cortisol, prolactin, and leptin in humans (n = 7). After ghrelin administration, slow-wave sleep was increased during the total night and accumulated delta-wave activity was enhanced during the second half of the night. Rapid-eye-movement (REM) sleep was reduced during the second third of the night, whereas all other sleep EEG variables remained unchanged. Furthermore, GH and prolactin plasma levels were enhanced throughout the night, and cortisol levels increased during the first part of the night (2200-0300). The response of GH to ghrelin was most distinct after the first injection and lowest after the fourth injection. In contrast, cortisol showed an inverse pattern of response. Leptin levels did not differ between groups. Our data show a distinct action of exogenous ghrelin on sleep EEG and nocturnal hormone secretion. We suggest that ghrelin is an endogenous sleep-promoting factor. This role appears to be complementary to the already described effects of the peptide in the regulation of energy balance. Furthermore, ghrelin appears to be a common stimulus of the somatotropic and hypothalamo-pituitary-adrenocortical systems. It appears that ghrelin is a sleep-promoting factor in humans.  相似文献   

18.
Corticotropin-releasing hormone (CRH) mediates responses to a variety of stressors. We subjected rats to a 1-h period of an acute stressor, physical restraint, and determined the impact on subsequent sleep-wake behavior. Restraint at the beginning of the light period, but not the dark period, increased waking and reduced rapid eye movement sleep without dramatically altering slow-wave sleep (SWS). Electroencephalogram (EEG) slow-wave activity during SWS and brain temperature were increased by this manipulation. Central administration of the CRH receptor antagonist astressin blocked the increase in waking after physical restraint, but not during the period of restraint itself. Blockade of CRH receptors with astressin attenuated the restraint-induced elevation of brain temperature, but not the increase of EEG slow-wave activity during subsequent SWS. Although corticosterone increased after restraint in naive animals, it was not altered by this manipulation in rats well habituated to handling and injection procedures. These results suggest that under these conditions central CRH, but not the hypothalamic-pituitary-adrenal axis, is involved in the alterations in sleep-wake behavior and the modulation of brain temperature of rats exposed to physical restraint.  相似文献   

19.
We hypothesized that nitric oxide (NO) may play a role in homeostatic sleep regulation. To test this hypothesis, we studied the sleep deprivation (SD)-induced homeostatic sleep responses after intraperitoneal administration of an NO synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME, a cumulative dose of 100 mg/kg). Amounts and intensity of sleep were increased in response to 8 h of SD in control rats (n = 8). Sleep amounts remained above baseline for 16 h after SD followed by a negative rebound. Rapid eye movement sleep (REMS) and non-REMS (NREMS) intensities were elevated for 16 and 4 h, respectively. L-NAME treatment (n = 8) suppressed the rebound increases in NREMS amount and intensity. REMS rebound was attenuated by L-NAME in the first dark period after SD; however, a second rebound appeared in the subsequent dark period. REMS intensity did not increase after SD in L-NAME-injected rats. The finding that the NO synthase inhibitor suppressed rebound increases in NREMS suggests that NO may play a role as a signaling molecule in homeostatic regulation of NREMS.  相似文献   

20.
One hour following administration of physiological concentrations of the steroid hormone antheridiol to a male strain of the water mold, Achlyaambisexualis, the rate of total cellular protein synthesis is increased. Further analysis revealed a sequential increase in the rate of syntheses for three classes of proteins following hormone stimulation. The rate of ribosomal protein synthesis increased as early as 20–30 minutes, followed by ribosomal salt wash proteins (40–60 minutes) and total soluble proteins after 60 minutes. Patterns of total cellular proteins, resolved by two-dimensional gel electrophoresis, during the first four hours after hormone treatment demonstrated the appearance of two newly synthesized peptides beginning at approximately 40 minutes followed by an increased rate of synthesis of three peptides after one hour. The synthesis of two peptides totally decreased after three hours of hormone induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号