首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Besides its role as a major recycler of unfolded or otherwise damaged intracellular proteins, the 26S proteasome functions as a regulator of many vital cellular processes and is postulated as a target for antitumor drugs. It has previously been shown that dysfunction of the catalytic core of the 26S proteasome, the 20S proteasome, causes a moderate increase in the frequency of spontaneous mutations in yeast [A. Podlaska, J. McIntyre, A. Skoneczna, E. Sledziewska-Gojska, The link between proteasome activity and postreplication DNA repair in Saccharomyces cerevisiae. Mol. Microbiol. 49 (2003) 1321-1332]. Here we show the results of genetic analysis, which indicate that the mutator phenotype caused by the deletion of UMP1, encoding maturase of 20S proteasome, involves members of the RAD6 epistasis group. The great majority of mutations occurring spontaneously in yeast cells deficient in 20S proteasome function are connected with the unique Rad6/Rad18-dependent error-prone translesion DNA synthesis (TLS) requiring the activities of both TLS polymerases: Pol eta and Pol zeta. Our results suggest the involvement of proteasomal activity in the limitation of this unique error-prone TLS mechanism in wild-type cells. On the other hand, we found that the mutator phenotypes caused by deficiency in Rad18 and Rad6, are largely alleviated by defects in proteasome activities. Since the mutator phenotypes produced by deletion of RAD6 and RAD18 require Pol zeta and Siz1/Ubc9-dependent sumoylation of PCNA, our results suggest that proteasomal dysfunction limits sumoylation-dependent error-prone activity of Pol zeta. Taken together, our findings strongly support the idea that proteolytic activity is involved in modulating the balance between TLS mechanisms functioning during DNA replication in S. cerevisiae.  相似文献   

2.
Martini EM  Keeney S  Osley MA 《Genetics》2002,160(4):1375-1387
To investigate the role of the nucleosome during repair of DNA damage in yeast, we screened for histone H2B mutants that were sensitive to UV irradiation. We have isolated a new mutant, htb1-3, that shows preferential sensitivity to UV-C. There is no detectable difference in bulk chromatin structure or in the number of UV-induced cis-syn cyclobutane pyrimidine dimers (CPD) between HTB1 and htb1-3 strains. These results suggest a specific effect of this histone H2B mutation in UV-induced DNA repair processes rather than a global effect on chromatin structure. We analyzed the UV sensitivity of double mutants that contained the htb1-3 mutation and mutations in genes from each of the three epistasis groups of RAD genes. The htb1-3 mutation enhanced UV-induced cell killing in rad1Delta and rad52Delta mutants but not in rad6Delta or rad18Delta mutants, which are defective in postreplicational DNA repair (PRR). When combined with other mutations that affect PRR, the histone mutation increased the UV sensitivity of strains with defects in either the error-prone (rev1Delta) or error-free (rad30Delta) branches of PRR, but did not enhance the UV sensitivity of a strain with a rad5Delta mutation. When combined with a ubc13Delta mutation, which is also epistatic with rad5Delta, the htb1-3 mutation enhanced UV-induced cell killing. These results suggest that histone H2B acts in a novel RAD5-dependent branch of PRR.  相似文献   

3.
R. H. Schiestl  S. Prakash    L. Prakash 《Genetics》1990,124(4):817-831
rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, we have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6 delta) mutations and show that they also suppress the gamma-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of gamma-ray sensitivity. The six suppressor mutations we isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. We show that suppression of rad6 delta is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6 delta SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed.  相似文献   

4.
J. P. McDonald  A. S. Levine    R. Woodgate 《Genetics》1997,147(4):1557-1568
Damage-inducible mutagenesis in prokaryotes is largely dependent upon the activity of the UmuD'C-like proteins. Since many DNA repair processes are structurally and/or functionally conserved between prokaryotes and eukaryotes, we investigated the role of RAD30, a previously uncharacterized Saccharomyces cerevisiae DNA repair gene related to the Escherichia coli dinB, umuC and S. cerevisiae REV1 genes, in UV resistance and UV-induced mutagenesis. Similar to its prokaryotic homologues, RAD30 was found to be damage inducible. Like many S. cerevisiae genes involved in error-prone DNA repair, epistasis analysis clearly places RAD30 in the RAD6 group and rad30 mutants display moderate UV sensitivity reminiscent of rev mutants. However, unlike rev mutants, no defect in UV-induced reversion was seen in rad30 strains. While rad6 and rad18 are both epistatic to rad30, no epistasis was observed with rev1, rev3, rev7 or rad5, all of which are members of the RAD6 epistasis group. These findings suggest that RAD30 participates in a novel error-free repair pathway dependent on RAD6 and RAD18, but independent of REV1, REV3, REV7 and RAD5.  相似文献   

5.
Possible functions of previously described genes RAD29 and RAD31 involved in DNA repair were determined by analyzing the interaction between these genes and mutations in the genes of the three basic epistatic groups: RAD3 (nucleotide excision repair), RAD6 (error-prone mutagenic repair system), RAD52 (recombination repair pathway), and also the apn1 mutation that blocks the synthesis of major AP endonuclease (base excision repair). The results obtained in these studies and the estimation of the capability for excision repair of lesions induced by 8-metoxipsoralen and subsequent exposure to long-wavelength UV light in mutants for these genes led to the assumption that the RAD29 and RAD31 genes are involved in yeast DNA repair control.  相似文献   

6.
In an effort to identify novel genes involved in recombination repair, we isolated fission yeast Schizosaccharomyces pombe mutants sensitive to methyl methanesulfonate (MMS) and a synthetic lethal with rad2. A gene that complements such mutations was isolated from the S. pombe genomic library, and subsequent analysis identified it as the fbh1 gene encoding the F-box DNA helicase, which is conserved in mammals but not conserved in Saccharomyces cerevisiae. An fbh1 deletion mutant is moderately sensitive to UV, MMS, and gamma rays. The rhp51 (RAD51 ortholog) mutation is epistatic to fbh1. fbh1 is essential for viability in stationary-phase cells and in the absence of either Srs2 or Rqh1 DNA helicase. In each case, lethality is suppressed by deletion of the recombination gene rhp57. These results suggested that fbh1 acts downstream of rhp51 and rhp57. Following UV irradiation or entry into the stationary phase, nuclear chromosomal domains of the fbh1Delta mutant shrank, and accumulation of some recombination intermediates was suggested by pulsed-field gel electrophoresis. Focus formation of Fbh1 protein was induced by treatment that damages DNA. Thus, the F-box DNA helicase appears to process toxic recombination intermediates, the formation of which is dependent on the function of Rhp51.  相似文献   

7.
In eukaryotes, damage tolerance of matrix DNA is mainly determined by the repair pathway under the control of the RAD6 epistatic group of genes. T this pathway is also a main source of mutations generated by mutagenic factors. The results of our recent studies show that gene HSM3 participating in the control of adaptive mutagenesis increases the frequency of mutations induced by different mutagens. Mutations rad18, rev3, and mms2 controlling various stages of the RAD6 pathway are epistatic with mutation hsm3 that decreases UV-induced mutagenesis to the level typical for single radiation-sensitive mutants. The level of mutagenesis in the double mutant srs2 hsm3 was lower than in both single mutants. Note that a decrease in the level of mutagenesis relative to the single mutant srs2 depends on the mismatch repair, since this level in the triple mutant srs2 hsm3 pms 1 corresponds to that in the single mutant srs2. These data show that the mutator phenotype hsm3 is probably determined by processes occurring in a D loop. In a number of current works, the protein Hsm3 was shown to participate in the assembly of the proteasome complex S26. The assembly of proteasomes is governed by the N-terminal domain. Our results demonstrated that the Hsm3 protein contains at least two domains; the N-terminal part of the domain is responsible for the proteasome assembly, whereas the C-terminal portion of the protein is responsible for mutagenesis.  相似文献   

8.
Affinity purification of the yeast 19S proteasome revealed the presence of Sem1 as a subunit. Its human homolog, DSS1, was found likewise to copurify with the human 19S proteasome. DSS1 is known to associate with the tumor suppressor protein BRCA2 involved in repair of DNA double-strand breaks (DSBs). We demonstrate that Sem1 is required for efficient repair of an HO-generated yeast DSB using both homologous recombination (HR) and nonhomologous end joining (NHEJ) pathways. Deletion of SEM1 or genes encoding other nonessential 19S or 20S proteasome subunits also results in synthetic growth defects and hypersensitivity to genotoxins when combined with mutations in well-established DNA DSB repair genes. Chromatin immunoprecipitation showed that Sem1 is recruited along with the 19S and 20S proteasomes to a DSB in vivo, and this recruitment is dependent on components of both the HR and NHEJ repair pathways, suggesting a direct role of the proteasome in DSB repair.  相似文献   

9.
10.
The repair of psoralen interstrand cross-links in the yeast Saccharomyces cerevisiae involves the DNA repair groups nucleotide excision repair (NER), homologous recombination (HR), and post-replication repair (PRR). In repair-proficient yeast cells cross-links induce double-strand breaks, in an NER-dependent process; the double-strand breaks are then repaired by HR. An alternate error-prone repair pathway generates mutations at cross-link sites. We have characterized the repair of plasmid molecules carrying a single psoralen cross-link, psoralen monoadduct, or double-strand break in yeast cells with deficiencies in NER, HR, or PRR genes, measuring the repair efficiencies and the levels of gene conversions, crossing over, and mutations. Strains with deficiencies in the NER genes RAD1, RAD3, RAD4, and RAD10 had low levels of cross-link-induced recombination but higher mutation frequencies than repair-proficient cells. Deletion of the HR genes RAD51, RAD52, RAD54, RAD55, and RAD57 also decreased induced recombination and increased mutation frequencies above those of NER-deficient yeast. Strains lacking the PRR genes RAD5, RAD6, and RAD18 did not have any cross-link-induced mutations but showed increased levels of recombination; rad5 and rad6 cells also had altered patterns of cross-link-induced gene conversion in comparison with repair-proficient yeast. Our observations suggest that psoralen cross-links can be repaired by three pathways: an error-free recombinational pathway requiring NER and HR and two PRR-dependent error-prone pathways, one NER-dependent and one NER-independent.  相似文献   

11.
The rad10, rad16, rad20, and swi9 mutants of the fission yeast Schizosaccharomyces pombe, isolated by their radiation sensitivity or abnormal mating-type switching, have been shown previously to be allelic. We have cloned DNA correcting the UV sensitivity or mating-type switching phenotype of these mutants and shown that the correcting DNA is encompassed in a single open reading frame. The gene, which we will refer to as rad16, is approximately 3 kb in length, contains seven introns, and encodes a protein of 892 amino acids. It is not essential for viability of S. pombe. The predicted protein is the homolog of the Saccharomyces cerevisiae RAD1 protein, which is involved in an early step in excision-repair of UV damage from DNA. The approximately 30% sequence identity between the predicted proteins from the two yeasts is distributed throughout the protein. Two-hybrid experiments indicate a strong protein-protein interaction between the products of the rad16 and swi10 genes of S. pombe, which mirrors that reported for RAD1 and RAD10 in S. cerevisiae. We have identified the mutations in the four alleles of rad16. They mapped to the N-terminal (rad10), central (rad20), and C-terminal (rad16 and swi9) regions. The rad10 and rad20 mutations are in the splice donor sequences of introns 2 and 4, respectively. The plasmid correcting the UV sensitivity of the rad20 mutation was missing the sequence corresponding to the 335 N-terminal amino acids of the predicted protein. Neither smaller nor larger truncations were, however, able to correct its UV sensitivity.  相似文献   

12.
Hrq1 helicase is a novel member of the RecQ family. Among the five human RecQ helicases, Hrq1 is most homologous to RECQL4 and is conserved in fungal genomes. Recent genetic and biochemical studies have shown that it is a functional gene, involved in the maintenance of genome stability. To better define the roles of Hrq1 in yeast cells, we investigated genetic interactions between HRQ1 and several DNA repair genes. Based on DNA damage sensitivities induced by 4-nitroquinoline-1-oxide (4-NQO) or cisplatin, RAD4 was found to be epistatic to HRQ1. On the other hand, mutant strains defective in either homologous recombination (HR) or post-replication repair (PRR) became more sensitive by additional deletion of HRQ1, indicating that HRQ1 functions in the RAD4-dependent nucleotide excision repair (NER) pathway independent of HR or PRR. In support of this, yeast two-hybrid analysis showed that Hrq1 interacted with Rad4, which was enhanced by DNA damage. Overexpression of Hrq1K318A helicase-deficient protein rendered mutant cells more sensitive to 4-NQO and cisplatin, suggesting that helicase activity is required for the proper function of Hrq1 in NER.  相似文献   

13.
We propose that rearrangements between short tandem repeated sequences occur by errors made during a replication fork repair pathway involving a replication template switch. We provide evidence here that the DnaK chaperone of E. coli controls this template switch repair process. Mutants in dnaK are sensitive to replication fork damage and exhibit high expression of the SOS response, indicative of repair deficiency. Deletion and expansion of tandem repeats that occur by replication misalignment ("slippage") are also DnaK dependent. Because mutations in dnaX encoding the gamma and tau subunits of DNA polymerase III mimic dnaK phenotypes and are genetically epistatic, we propose that the DnaKJ chaperone remodels the replisome to facilitate repair. The fork remains largely intact because PriA or PriC restart proteins are not required. We also suggest that the poorly defined RAD6-RAD18-RAD5 mechanism of postreplication repair in eukaryotes occurs by an analogous mechanism to the DnaK template-switch pathway in prokaryotes.  相似文献   

14.
Mechanisms for genetic control of cell division cycle (checkpoint control) have been studied in most detail in yeast Saccharomyces cerevisiae. To clarify the role of checkpoint genes RAD9, RAD17, RAD24, and RAD53 in cell radioresistance, double mutants were analyzed for cell sensitivity to ionizing radiation. Double mutants carrying mutations in combination with mutation rad9delta were shown to manifest the epistatic type of interaction. Our results suggest that checkpoint genes RAD9, RAD17, RAD24, and RAD53 belong to a single epistatic group designated RAD9 and govern the same pathway. Genes RAD9 and RAD53 have a positive effect on sensitivity to gamma-radiation, whereas RAD17 and RAD24 have a negative effect. Interactions between mutations may differ when considering their sensitivity to gamma-radiation and UV light; mutations rad9delta and rad24delta were shown to manifest the additive effect in the first case and epistatic effect in the second.  相似文献   

15.
Sun X  Thrower D  Qiu J  Wu P  Zheng L  Zhou M  Bachant J  Wilson DM  Shen B 《DNA Repair》2003,2(8):925-940
Rad2 family nucleases, identified by sequence similarity within their catalytic domains, function in multiple pathways of DNA metabolism. Three members of the Saccharomyces cerevisiae Rad2 family, Rad2, Rad27, and exonuclease 1 (Exo1), exhibit both 5' exonuclease and flap endonuclease activities. Deletion of RAD27 results in defective Okazaki fragment maturation, DNA repair, and subsequent defects in mutation avoidance and chromosomal stability. However, strains lacking Rad27 are viable. The expression profile of EXO1 during the cell cycle is similar to that of RAD27 and other genes encoding proteins that function in DNA replication and repair, suggesting Exo1 may function as a back up nuclease for Rad27 in DNA replication. We show that overexpression of EXO1 suppresses multiple rad27 null mutation-associated phenotypes derived from DNA replication defects, including temperature sensitivity, Okazaki fragment accumulation, the rate of minichromosome loss, and an elevated mutation frequency. While generally similar findings were observed with RAD2, overexpression of RAD2, but not EXO1, suppressed the MMS sensitivity of the rad27 null mutant cells. This suggests that Rad2 can uniquely complement Rad27 in base excision repair (BER). Furthermore, Rad2 and Exo1 complemented the mutator phenotypes and cell cycle defects of rad27 mutant strains to differing extents, suggesting distinct in vivo nucleic acid substrates.  相似文献   

16.
In order to help further define DNA post-replication repair (PRR), a conditional synthetic lethal screen was employed to identify new genes involved in the PRR pathway. A synthetic lethal screen with the mms2 mutation resulted in the recovery of two suppressor mutations responsible for regulating PRR. The recovered suppressors are the mating type genes and SIR3. Indeed, controlled expression of both mating type genes or deletion of SIR3 rescued the conditional synthetic lethal mutant phenotypes. Furthermore, comprehensive analyses suggest that mating type heterozygosity confers tolerance to a broad range of DNA damage, and that this effect is limited to all PRR pathway mutations, but does not apply to base excision repair, nucleotide excision repair or recombination repair mutants. In addition, the tolerance conferred to PRR mutants as a result of mating type heterozygosity is dependent on a functional homologous recombination but not the non-homologous end-joining pathway. Thus, mating type status appears to be responsible for signalling DNA content and possibly cell cycle stage, allowing the cell to select the most efficient means to repair the DNA damage.  相似文献   

17.
Mechanisms for genetic control of cell division cycle (checkpoint control) have been studied in most detail in yeast Saccharomyces cerevisiae. To clarify the role of checkpoint genes RAD9, RAD17, RAD24, and RAD53 in cell radioresistance, double mutants were analyzed for cell sensitivity to ionizing radiation. Double mutants carrying mutations in combination with mutation rad9Delta were shown to manifest the epistatic type of interaction. Our results suggest that checkpoint genes RAD9, RAD17, RAD24, and RAD53 belong to a single epistatic group designated RAD9 and govern the same pathway. Genes RAD9 and RAD53 have a positive effect on sensitivity to gamma-radiation, whereas RAD17 and RAD24 have a negative effect. Interactions between mutations may differ when considering their sensitivity to gamma-radiation and UV light; mutations rad9Delta and rad24Delta were shown to manifest the additive effect in the first case and epistatic effect in the second.  相似文献   

18.
Mutants of Salmonella typhimurium lacking DNA adenine methylase were isolated; they include insertion and deletion alleles. The dam locus maps at 75 min between cysG and aroB, similar to the Escherichia coli dam gene. Dam(-) mutants of S. typhimurium resemble those of E. coli in the following phenotypes: (1) increased spontaneous mutations, (2) moderate SOS induction, (3) enhancement of duplication segregation, (4) inviability of dam recA and dam recB mutants, and (5) suppression of the inviability of the dam recA and dam recB combinations by mutations that eliminate mismatch repair. However, differences between S. typhimurium and E. coli dam mutants are also found: (1) S. typhimurium dam mutants do not show increased UV sensitivity, suggesting that methyl-directed mismatch repair does not participate in the repair of UV-induced DNA damage in Salmonella. (2) S. typhimurium dam recJ mutants are viable, suggesting that the Salmonella RecJ function does not participate in the repair of DNA strand breaks formed in the absence of Dam methylation. We also describe a genetic screen for detecting novel genes regulated by Dam methylation and a locus repressed by Dam methylation in the S. typhimurium virulence (or ``cryptic') plasmid.  相似文献   

19.
The Mre11-Rad50-Nbs1 protein complex has emerged as a central component in the human cellular DNA damage response, and recent observations suggest that these proteins are at least partially responsible for the linking of DNA damage detection to DNA repair and cell cycle checkpoint functions. We have identified Aspergillus nidulans sldI1444D mutant in a screen for dynein synthetic lethals. The sldI(RAD50) gene was cloned by complementation of the sporulation deficiency phenotype of this mutant. A transversion G-->C at the position 2509 (Ala-692-Pro amino acid change) in the sldI1444D mutant causes sensitivity to several DNA-damaging agents. The mutation sldI1 occurs at the CXXC hinge domain of Rad50. We have deleted part of the coiled-coil and few amino acids of the Rad50-Mre11 interaction region and assessed several phenotypic traits in this deletion strain. Besides sensitivity to a number of DNA-damaging agents, this deletion strain is also impaired in the DNA replication checkpoint response, and in ascospore viability. There is no delay of the S-phase when germlings of both sldI (RAD50) and mreA(MRE11) inactivation strains were exposed to the DNA damage caused by bleomycin. Transformation experiments and Southern blot analysis indicate homologous recombination is dependent on scaA(NBS1) function in the Mre11 complex. There are epistatic and synergistic interactions between sldI( RAD50) and bimE(APC1) at S-phase checkpoints and response to hydroxyurea and UV light. Our results suggest a possible novel feature of the Mre11 complex in A. nidulans, i.e. a relationship with bimE (APC1).  相似文献   

20.
The mode of interaction in haploid Saccharomyces cerevisiae of two pso mutations with each other and with rad mutations affected in their excision-resynthesis (rad3), error-prone (rad6), and deoxyribonucleic acid double-strand break (rad52) repair pathways was determined for various double mutant combinations. Survival data for 8-methoxypsoralen photoaddition, 254-nm ultraviolet light and gamma rays are presented. For 8-methoxypsoralen photoaddition, which induces both deoxyribonucleic acid interstrand cross-links and monoadditions, the pso1 mutation is epistatic to the rad6, rad52, and pso2 mutations, whereas it is synergistic to rad3. The pso2 mutation, which is specifically sensitive to photoaddition of psoralens, is epistatic to rad3 and demonstrates a nonepistatic interaction with rad6 and rad52. rad3 and rad6, as well as rad 6 and rad52, show synergistic interactions with each other, whereas rad 3 is epistatic to rad52. Consequently, it is proposed that PSO1 and RAD3 genes govern steps in the independent pathways. The PSO1 activity leading to an intermediate which is repaired via the three incidence pathways controlled by RAD6, RAD52, and PSO2 genes. Since pso1 interacts synergistically with rad3 and rad52 and epistatically with rad6 after UV radiation, the PSO1 gene appears to belong to the RAD6 group. For gamma ray sensitivity, pso1 is epistatic to rad6 and rad52, which suggests that this gene controls a step which is common to the two other independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号