首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physical activity, exercise training, and fitness are associated with decreased cardiovascular risk. In the context that a risk factor "gap" exists in the explanation for the beneficial effects of exercise on cardiovascular disease, it has recently been proposed that exercise generates hemodynamic stimuli which exert direct effects on the vasculature that are antiatherogenic. In this review we briefly introduce some of the in vitro and in vivo evidence relating exercise hemodynamic modulation and vascular adaptation. In vitro data clearly demonstrate the importance of shear stress as a potential mechanism underlying vascular adaptations associated with exercise. Supporting this is in vivo human data demonstrating that exercise-mediated shear stress induces localized impacts on arterial function and diameter. Emerging evidence suggests that exercise-related changes in hemodynamic stimuli other than shear stress may also be associated with arterial remodeling. Taken together, in vitro and in vivo data strongly imply that hemodynamic influences combine to orchestrate a response to exercise and training that regulates wall stress and peripheral vascular resistance and contributes to the antiatherogenic impacts of physical activity, fitness, and training.  相似文献   

2.
In vitro evidence suggests that resting pulmonary vascular tone and endothelium-dependent pulmonary vasodilation are mediated by changes in vascular smooth muscle concentrations of guanosine 3',5'-cyclic monophosphate (cGMP). We investigated this hypothesis in vivo in 19 mechanically ventilated intact lambs by determining the hemodynamic effects of methylene blue (a guanylate cyclase inhibitor) and then by comparing the hemodynamic response to five vasodilators during pulmonary hypertension induced by the infusion of U-46619 (a thromboxane A2 mimic) or methylene blue. Methylene blue caused a significant time-dependent increase in pulmonary arterial pressure. During U-46619 infusions, acetylcholine, ATP-MgCl2, sodium nitroprusside, isoproterenol, and 8-bromo-cGMP decreased pulmonary arterial pressure. During methylene blue infusions, the decreases in pulmonary arterial pressure caused by acetylcholine and ATP-MgCl2 (endothelium-dependent vasodilators) and sodium nitroprusside (an endothelium-independent guanylate cyclase-dependent vasodilator) were attenuated by greater than 50%. The decreases in pulmonary arterial pressure caused by isoproterenol and 8-bromo-cGMP (endothelium-independent vasodilators) were unchanged. This study in intact lambs supports the in vitro evidence that changes in vascular smooth muscle cell concentrations of cGMP in part mediate resting pulmonary vascular tone and endothelium-dependent pulmonary vasodilation.  相似文献   

3.
Two different stent configurations (i.e. the well known Palmaz–Schatz (PS) and a new stent configuration) are mechanically investigated. A finite element model was used to study the two geometries under combining loads and a computational fluid dynamic model based on fluid structure interaction was developed investigating the plaque and the artery wall reactions in a stented arterial segment. These models determine the stress and displacement fields of the two stents under internal pressure conditions. Results suggested that stent designs cause alterations in vascular anatomy that adversely affect arterial stress distributions within the wall, which have impact in the vessel responses such as the restenosis. The hemodynamic analysis shows the use of new stent geometry suggests better biofluid mechanical response such as the deformation and the progressive amount of plaque growth.  相似文献   

4.
Research studies over the last three decades have established that hemodynamic interactions with the vascular surface as well as surgical injury are inciting mechanisms capable of eliciting distal anastomotic intimal hyperplasia (IH) and ultimate bypass graft failure. While abnormal wall shear stress (WSS) conditions have been widely shown to affect vascular biology and arterial wall self-regulation, the near-wall localization of critical blood particles by convection and diffusion may also play a significant role in IH development. It is hypothesized that locations of elevated platelet interactions with reactive or activated vascular surfaces, due to injury or endothelial dysfunction, are highly susceptible to IH initialization and progression. In an effort to assess the potential role of platelet-wall interactions, experimentally validated particle-hemodynamic simulations have been conducted for two commonly implemented end-to-side anastomotic configurations, with and without proximal outflow. Specifically, sites of significant particle interactions with the vascular surface have been identified by a novel near-wall residence time (NWRT) model for platelets, which includes shear stress-based factors for platelet activation as well as endothelial cell expression of thrombogenic and anti-thrombogenic compounds. Results indicate that the composite NWRT model for platelet-wall interactions effectively captures a reported shift in significant IH formation from the arterial floor of a relatively high-angle (30 deg) graft with no proximal outflow to the graft hood of a low-angle graft (10 deg) with 20% proximal outflow. In contrast, other WSS-based hemodynamic parameters did not identify the observed system-dependent shift in IH formation. However, large variations in WSS-vector magnitude and direction, as encapsulated by the WSS-gradient and WSS-angle-gradient parameters, were consistently observed along the IH-prone suture-line region. Of the multiple hemodynamic factors capable of eliciting a hyperplastic response at the cellular level, results of this study indicate the potential significance of platelet-wall interactions coinciding with regions of low WSS in the development of IH.  相似文献   

5.
Following the deployment of a coronary stent and disruption of an atheromatous plaque, the deformation of the arterial wall and the presence of the stent struts create a new fluid dynamic field, which can cause an abnormal biological response. In this study 3D computational models were used to analyze the fluid dynamic disturbances induced by the placement of a stent inside a coronary artery. Stents models were first expanded against a simplified arterial plaque, with a solid mechanics analysis, and then subjected to a fluid flow simulation under pulsatile physiological conditions. Spatial and temporal distribution of arterial wall shear stress (WSS) was investigated after the expansion of stents of different designs and different strut thicknesses. Common oscillatory WSS behavior was detected in all stent models. Comparing stent and vessel wall surfaces, maximum WSS values (in the order of 1Pa) were located on the stent surface area. WSS spatial distribution on the vascular wall surface showed decreasing values from the center of the vessel wall portion delimited by the stent struts to the wall regions close to the struts. The hemodynamic effects induced by two different thickness values for the same stent design were investigated, too, and a reduced extension of low WSS region (<0.5Pa) was observed for the model with a thicker strut.  相似文献   

6.
Wada S  Karino T 《Biorheology》1999,36(3):207-223
It is suspected that physical and fluid mechanical factors play important roles in the localization of atherosclerotic lesions and intimal hyperplasia in man by affecting the transport of cholesterol in flowing blood to arterial walls. Hence, we have studied theoretically the effects of various physical and fluid mechanical factors such as wall shear rate, diffusivity of low density lipoproteins (LDL), and filtration velocity of water at the vessel wall on surface concentration of LDL at an arterial wall by means of a computer simulation of convective and diffusive transport of LDL in flowing blood to the wall of a straight artery under conditions of a steady flow. It was found that under normal physiologic conditions prevailing in the human arterial system, due to the presence of a filtration flow of water at the vessel wall, flow-dependent concentration polarization (accumulation or depletion) of LDL occurs at a blood/endothelium boundary. The surface concentration of LDL at an arterial wall takes higher values than that in the bulk flow in that vessel, and it is affected by three major factors, that is, wall shear rate, gamma w, filtration velocity of water at the vessel wall, Vw, and the distance from the entrance of the artery, L. It increases with increasing Vw and L, and decreasing gamma w hence the flow rate. Thus, under certain circumstances, the surface concentration of LDL could rise locally to a value which is several times higher than that in the bulk flow, or drop locally to a value even lower than a critical concentration for the maintenance of normal functions and survival of cells forming the vessel wall. These results suggest the possibility that all the vascular phenomena such as the localization of atherosclerotic lesions and intimal hyperplasia, formation of cerebral aneurysms, and adaptive changes of lumen diameter and wall structure of arteries and veins to certain changes in hemodynamic conditions in the circulation are governed by this flow-dependent concentration polarization of LDL which carry cholesterol.  相似文献   

7.
Pneumonectomy approximately halves the available pulmonary vascular bed. It is unknown whether the remaining lung has sufficient vascular reserve to cope with increased blood flow under stressful conditions without demonstrating abnormal pulmonary hemodynamics. To investigate this question, unanesthetized ewes with vascular catheters had hemodynamics assessed before and after a left pneumonectomy. Subsequently, on different days, the sheep were exercised on a treadmill under normoxic and hypobaric hypoxic (430 mmHg) (1 mmHg = 133.3 Pa) conditions. Pneumonectomy itself increased mean pulmonary arterial pressure by 4 mmHg. During normoxic or hypoxic exercise, the pneumonectomized sheep demonstrated a pulmonary hemodynamic response similar to normal sheep with two lungs. The pressure-flow relation for the right lung suggested the vascular reserve of the lung was not exceeded during exercise in the pneumonectomized sheep. Eighteen to 70 days after pneumonectomy there was no evidence of right ventricular hypertrophy, but there were small increases in the number of muscularized vessels less than 50 microns diameter and in the amount of muscle in normally muscularized pulmonary arteries. This study demonstrates that pneumonectomy slightly increases mean pulmonary arterial pressure. However, there is sufficient vascular reserve in the remaining lung to permit a normal hemodynamic response to exercise-induced increased blood flow even under hypoxic conditions.  相似文献   

8.
In-stent restenosis occurs in coronary arteries after implantation of drug-eluting stents with non-uniform restenosis thickness distribution in the artery cross section. Knowledge of the spatio-temporal drug uptake in the arterial wall is useful for investigating restenosis growth but may often be very expensive/difficult to acquire experimentally. In this study, local delivery of a hydrophobic drug from a drug-eluting stent implanted in a coronary artery is mathematically modelled to investigate the drug release and spatio-temporal drug distribution in the arterial wall. The model integrates drug diffusion in the coating and drug diffusion with reversible binding in the arterial wall. The model is solved by the finite volume method for both high and low drug loadings relative to its solubility in the stent coating with varied isotropic–anisotropic vascular drug diffusivities. Drug release profiles in the coating are observed to depend not only on the coating drug diffusivity but also on the properties of the surrounding arterial wall. Time dependencies of the spatially averaged free- and bound-drug levels in the arterial wall on the coating and vascular drug diffusivities are discussed. Anisotropic vascular drug diffusivities result in slightly different average drug levels in the arterial wall but with very different spatial distributions. Higher circumferential vascular diffusivity results in more uniform drug loading in the upper layers and is potentially beneficial in reducing in-stent restenosis. An analytical expression is derived which can be used to determine regions in the arterial with higher free-drug concentration than bound-drug concentration.  相似文献   

9.
A computational vascular fluid–structure interaction framework for the simulation of patient-specific cerebral aneurysm configurations is presented. A new approach for the computation of the blood vessel tissue prestress is also described. Simulations of four patient-specific models are carried out, and quantities of hemodynamic interest such as wall shear stress and wall tension are studied to examine the relevance of fluid–structure interaction modeling when compared to the rigid arterial wall assumption. We demonstrate that flexible wall modeling plays an important role in accurate prediction of patient-specific hemodynamics. Discussion of the clinical relevance of our methods and results is provided.  相似文献   

10.
11.
Fluid shear stress and the vascular endothelium: for better and for worse   总被引:28,自引:0,他引:28  
As blood flows, the vascular wall is constantly subjected to physical forces, which regulate important physiological blood vessel responses, as well as being implicated in the development of arterial wall pathologies. Changes in blood flow, thus generating altered hemodynamic forces are responsible for acute vessel tone regulation, the development of blood vessel structure during embryogenesis and early growth, as well as chronic remodeling and generation of adult blood vessels. The complex interaction of biomechanical forces, and more specifically shear stress, derived by the flow of blood and the vascular endothelium raise many yet to be answered questions:How are mechanical forces transduced by endothelial cells into a biological response, and is there a "shear stress receptor"?Are "mechanical receptors" and the final signaling pathways they evoke similar to other stimulus-response transduction systems?How do vascular endothelial cells differ in their response to physiological or pathological shear stresses?Can shear stress receptors or shear stress responsive genes serve as novel targets for the design of diagnostic and therapeutic modalities for cardiovascular pathologies?The current review attempts to bring together recent findings on the in vivo and in vitro responses of the vascular endothelium to shear stress and to address some of the questions raised above.  相似文献   

12.
Hemodynamic forces play critical roles in vascular pathologies such as atherosclerosis, aneurysms, and stenosis. However, detailed relationships between the specific in vivo hemodynamic microenvironment and vascular responses leading to the triggering or exacerbation of pathological remodeling of the vessel remain elusive. We have developed a hemodynamics-biology co-mapping technique that enables in situ correlation between the in vivo blood flow field and vascular changes secondary to hemodynamic insult. The hemodynamics profile is obtained from computational fluid dynamics simulation within the vascular geometry reconstructed from three-dimensional in vivo images, whereas the vascular response is obtained from histology or immunohistochemistry on harvested vascular tissue. The hemodynamics field is virtually sectioned in the histological slicing planes and digitally co-mapped with the histological images, thereby enabling correlation of the specific local vascular responses with the inciting hemodynamic stresses. We demonstrate application of this technique to rabbit basilar terminus subjected to elevated flow. Morphological changes at the basilar terminus 5 days after the flow increase were co-mapped with the initial wall shear stress and wall shear stress gradient distributions, from which localization of destructive remodeling in a specific hemodynamic zone was noticed. This method paves the way for further investigations to determine the connection between in vivo mechanical stimuli and biological responses, such as initiation of aneurysmal remodeling.  相似文献   

13.
Based on the hypothesis that aggravating hemodynamic factors play a key role in the onset of arterial diseases, the methodology of "virtual prototyping" of branching blood vessels was applied to diseased external carotid artery (ECA) segments. The goals were to understand the underlying particle-hemodynamics and to provide various geometric design options for improved surgical reconstruction based on the minimization of critical hemodynamic wall parameters (HWPs). First, a representative carotid artery bifurcation (CAB) and then CABs with stenosed ECAs, i.e., a distally occluded ECA and an ECA stump, were analyzed based on transient three-dimensional blood flow solutions, employing a user-enhanced commercial finite volume code. Specifically, the HWPs, i.e., oscillatory shear index, wall shear stress angle gradient, near-wall residence time of monocytes, and near-wall helicity angle difference were evaluated to compare the merits of each design option, including a reconstructed near-optimal junction which generates the lowest HWP-values. The results provide physical insight to the biofluid dynamics of branching blood vessels and guide vascular surgeons as well as stent manufacturers towards interventions leading to high sustained patency rates.  相似文献   

14.
BACKGROUND: In vivo experimentation is the most realistic approach for exploring the vascular biological response to the hemodynamic stresses that are present in life. Post-mortem vascular casting has been used to define the in vivo geometry for hemodynamic simulation; however, this procedure damages or destroys the tissue and cells on which biological assays are to be performed. METHOD OF APPROACH: Two statistical approaches, regional (RSH) and linear (LSH) statistical hemodynamics, are proposed and illustrated, in which flow simulations from one series of experiments are used to define a best estimate of the hemodynamic environment in a second series. As an illustration of the technique, RSH is used to compare the gene expression profiles of regions of the proximal external iliac arteries of swine exposed to different levels of time-average shear stress. RESULTS: The results indicate that higher shears promote a more atheroprotective expression phenotype in porcine arterial endothelium. CONCLUSION: Statistical hemodynamics provides a realistic estimate of the hemodynamic stress on vascular tissue that can be correlated against biological response.  相似文献   

15.
In recent decades, studies have shown that lipoproteid physiological role goes beyond just their part in lipid transport. Database is accumulating on connection of lipoproteid pathological effects upon cardiovascular system with their ability to interfere in the signal transmission processes necessary for normal control of the vascular homeostasis. There is some evidence that lipoproteids are capable of affecting vascular tonus, coagulation balance, and inflammatory processes in the vascular wall. These effects will be realized through activation of the blood cell and vascular wall signal systems and can accelerate development of atherosclerosis and prompt hypertension and arterial thrombophilia.  相似文献   

16.
Cardiovascular diseases represent one of the most important causes of death in the world. The underlying pathogenetic process is atherosclerosis which leads to the progressive reduction of the arterial lumen and therefore to the ischemia of the perfused organs. Atherogenesis results from the interaction between the biology of the arterial wall and the various stress stimuli present in the circulating blood. The first steps of atherogenesis occur very early, already during the fetal life. Those arterial segments that are subjected to the initiating causes (including hemodynamic stress) show altered endothelial permeability and allow the infiltration of macromolecules, like lipoproteins, in the subintimal space. At the same time, the smooth muscle cells that are subjected to the same local factors produce proteoglycans able to bind lipoproteins and to promote their oxidation. Oxidized lipoproteins induce the expression of chemokines and adhesion molecules on the luminal surface of the endothelium, which then allow the local recruitment of monocytes-macrophages and T lymphocytes. This is a local inflammatory process that, in theory, should contribute to reestablish the homeostasis of the vascular wall by promoting the elimination of injured tissue and its repair. Unfortunately, for unknown reasons, the immuno-inflammatory reaction persists and autoamplifies, the various components of the immune response finally contributing to the pathogenesis of atherosclerosis as well as of atherosclerotic complications.  相似文献   

17.
Friedman MH 《Biorheology》2002,39(3-4):513-517
Geometric parameters and features vary within the vasculature. Furthermore, at any given anatomic site, there are substantial variations in geometry among individuals. These variations can contribute to a corresponding variability in the hemodynamic environment and, to the extent that hemodynamics affects the atherosclerotic process, the progress of vascular disease. Measurements of the geometry and wall morphometry of post-mortem human coronary arteries demonstrate a relationship between these variables that supports the notion that geometric variations can contribute to a corresponding variability in the local rate of progression of arterial disease. The dynamic geometry of the coronary arteries also varies from site to site and among individuals, and this variability too may play a role in the epidemiology of coronary artery disease.  相似文献   

18.
Remodeling of the primary vascular system of the embryo into arteries and veins has long been thought to depend largely on the influence of hemodynamic forces. This view was recently challenged by the discovery of several molecules specifically expressed by arterial or venous endothelial cells. We here analysed the expression of neuropilin-1 and TIE2, two transmembrane receptors known to play a role in vascular development. In birds, neuropilin-1 was expressed by arterial endothelium and wall cells, but absent from veins. TIE2 was strongly expressed in embryonic veins, but only weakly transcribed in most arteries. To examine whether endothelial cells are committed to an arterial or venous fate once they express these specific receptors, we constructed quail-chick chimeras. The dorsal aorta, carotid artery and the cardinal and jugular veins were isolated together with the vessel wall from quail embryos between embryonic day 2 to 15 and grafted into the coelom of chick hosts. Until embryonic day 7, all grafts yielded endothelial cells that colonized both host arteries and veins. After embryonic day 7, endothelial plasticity was progressively lost and from embryonic day 11 grafts of arteries yielded endothelial cells that colonized only chick arteries and rarely reached the host veins, while grafts of jugular veins colonized mainly host veins. When isolated from the vessel wall, quail aortic endothelial cells from embryonic day 11 embryos were able to colonize both host arteries and veins. Our results show that despite the expression of arterial or venous markers the endothelium remains plastic with regard to arterial-venous differentiation until late in embryonic development and point to a role for the vessel wall in endothelial plasticity and vessel identity.  相似文献   

19.
Previous in vitro and in vivo studies have shown that norepinephrine, acting through alpha(1A)-adrenoceptors, stimulates hypertrophy, proliferation, and migration of vascular smooth muscle cells and adventitial fibroblasts and may contribute to neointimal growth, lumen loss, and inward remodeling caused by iatrogenic wall injury and vascular disease. Our present aim was to determine whether intravenous administration of the alpha(1A)-adrenoceptor antagonist KMD-3213, at dosages without systemic hemodynamic effects, inhibits wall growth after injury. Inhibition of alpha(1A)-adrenoceptors with 12.8 and 32 microg/kg KMD-3213 had no effect on arterial pressure or renal and hindquarter resistances in anesthetized rats. A second group then received carotid balloon injury and continuous intravenous KMD-3213 at 4 and 10 microg x kg(-1) x h(-1) for 2 wk. Mean, systolic, and diastolic arterial pressures and heart rate of conscious unrestrained rats were unaffected. KMD-3213 reduced neointima growth by approximately 30 and 46% at the two doses (P < 0.01). These data support the novel hypothesis that a direct alpha(1A)-adrenoceptor-dependent trophic action of catecholamines is augmented by injury and may contribute significantly to hypertrophic vascular disease.  相似文献   

20.
The syndrome of neurogenic pulmonary edema raises the question of whether there are neurological influences on pulmonary vascular permeability. Previous experimental models commonly produced severe hemodynamic alterations, complicating the distinction of increased permeability from increased hydrostatic forces in the formation of the pulmonary edema. Accordingly, we employed a milder central nervous system insult and measured the pulmonary vascular protein extravasation rate, which is a sensitive and specific indicator of altered protein permeability. After elevating intracranial pressure via cisternal saline infusion in anesthetized dogs, we used a dual isotope method to measure the protein leak index. This elevated intracranial pressure resulted in a nearly three-fold rise in the protein leak index (54.1 +/- 7.5 vs. 20.2 +/- 0.9). This central nervous system insult was associated with only mild increases in pulmonary arterial pressures and cardiac output. However, when we reproduced these hemodynamic changes with left atrial balloon inflation or isoproterenol infusion, we observed no effect on the protein leak index compared with control. Although the pulmonary arterial wedge pressure with intracranial pressure remained <10 mmHg, increases in the extravascular lung water were demonstrated. The results suggest the existence of neurological influences on pulmonary vascular protein permeability. We conclude that neurological insults result in increase pulmonary vascular permeability to protein and subsequent edema formation, which could not be accounted for by hemodynamic changes alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号