首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gross morphology and ultrastructure of the different parts of the protonephridial system of the monozoic tapeworms Gyrocotyle urna and Amphilina foliacea are described. The terminal cell in both species has numerous cilia which are interconnected and extend into the lumen of the first canal cell. The filtration area is built up from projections of two cells, the terminal cell and the first canal cell. The first canal cell forms a solid hollow cylinder without a cell gap and a desmosome as found in Neodermata other than cestodes and Udonella. In Gyroctyle the nucleus of the first canal cell is located in the wall cytoplasma whereas more distally located ductules of both species have subepithelial cell bodies containing the nuclei. In both taxa the protonephridial canal system is reticulate. In Amphilina the distal canals lack non-terminal ciliary flames, such ciliary tufts can be found in the larger capillaries of Gyrocotyle. The capillary cilia have rootlets and the ultrastructure of the duct wall cytoplasm containing large numbers of vesicles indicates highly active transport processes. The morphology of the protonephridial systems is discussed with regard to the evolution of Neodermata (especially of the Cestoda) and the function of the protonephridial system in cestodes as a probable organ of nutrient distribution.  相似文献   

2.
Summary The ultrastructure of the protonephridial system of the lycophore larva of Gyrocotyle urna Grube and Wagener, 1852, is described. It consists of six terminal cells, at least two proximal canal cells, two distal canal cells and two nephridiopore cells. The terminal cells and the proximal canal cell build up the filtration weir with its two circles of weir rods. The proximal canal cell constitutes a solid, hollow cylinder without a cell gap and desmosome. The distal canal cell is characterized by a strong reduction of the canal lumen by irregularly shaped microvilli. The nephridiopore region is formed by a nephridiopore cell; its cell body is located at some distance proximally within the larva. The connection among different canal cells is brought about by septate desmosomes. Morphological, evolutionary and functional aspects of the protonephridial system within Platyhelminthes are discussed. The structure of the proximal canal cells without a desmosome is considered an autapomorphy of Cestoda.Abbreviations ci cilia of the terminal cell - Co distal canal cell - col lumen of the distal canal cell - Ep epidermis - er outer rods of the filtration weir - il inner leptotriches - ir inner rods of the filtration weir - ld lipid droplets - mt microtubule - mv microvilli - Nc nephridiopore cell - Ne neodermis anlage cells - nu nucleus - pC proximal canal cell - ro ciliary rootlets - sd septate desmosome - Tc terminal cell  相似文献   

3.
In an attempt to obtain detailed information on the entire protonephridial system in Gastrotricha, we have studied the protonephridial ultrastructure of two paucitubulatan species, Xenotrichula carolinensis syltensis and Chaetonotus maximus by means of complete sets of ultrathin sections. In spite of some differences in detail, the morphology of protonephridia in both examined species shows a common pattern: Both species have one pair of protonephridia that consist of a bicellular terminal organ, a voluminous, aciliar canal cell and an adjacent, aciliar nephridiopore cell. The terminal organ consists of two monociliar terminal cells each with a distal cytoplasmic lobe. These lobes interdigitate and surround cilia and microvilli of the terminal cells. Where both lobes interdigitate, a meandering cleft is formed that is covered by the filtration barrier. We here term the entire structure composite filter. The elongated, in some regions convoluted protonephridial lumen opens distally to the outside via a permanent nephridiopore. A comparison with the protonephridia of other species of the Gastrotricha allows hypothesising the following autapomorphies of the Paucitubulata: The bicellular terminal organ with a composite filter, the convoluted distal canal cell lumen and the absence of cilia, ciliary basal structures and microvilli within the canal cell. Moreover, this comparative survey could confirm important characteristics of the protonephridial system assumed for the ground pattern of Gastrotricha like, for example, the single terminal cell with one cilium surrounded by eight microvilli.  相似文献   

4.
The flame bulb is formed by a terminal cell and a proximal canal cell. The weir consists of interdigitating ribs all of which form one circle, i.e. alternating ribs do not have distinctly 'internal' or 'external' positions. Cytoplasmic cords are absent and all ribs, i.e. those continuous with the proximal canal cell and those continuous with the terminal cell, form external leptotriches. At least some external leptotriches have interconnected branches extending along the flame bulb. Internal leptotriches are not branched and arise from the basal perikaryon of the terminal cell. In the cytoplasmic cylinder at the tip of the flame bulb, structures resembling incomplete septate junctions were seen. However, neither the cytoplasmic cylinder nor the small protonephridial capillaries contain complete septate junctions as found in all other Monogenea Polyopisthocotylea, Monogenea Monopisthocotylea, Trematoda Aspidogastrea and Trematoda Digenea examined to date. In the lack of a septate junction, Anoplodiscus resembles Udonella, Amphilinidea, Gyrocotylidea and Eucestoda. However, the presence in this species of rudimentary septate junctions in the small capillaries and of complete junctions in larger ones indicates that complete junctions have been secondarily lost. Anoplodiscus resembles the Monogenea and Trematoda in the presence of lamellae in the larger protonephridial ducts. For the first time in a monogenean, the ultrastructure of the excretory bladder is described. A nucleated convoluted duct opens through a narrow connecting duct into the bladder, which in turn opens through a narrow connecting duct into the excretory pore lined by tegument. Convoluted duct, connecting ducts and bladder are lined by a lamellated epitheliu.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Fine structure studies show that (1) the terminal cell is an elongated thin-walled and fenestrated basket with a multiciliary flame. Many short curved microvilli are confined to the cell lumen, while longer straight microvilli project from the cell's apical end into the proximal part of the protonephri-dial capillary, forming a sheath around the flame. The filtration area consists of slits between narrow cytoplasmic bars and is entirely confined to the terminal cell, which consequently is defined as a flame bulb, not closely similar to those of other phyla. (2) The protonephridial capillary is short and narrow, with few scattered cilia and luminal microvilli. (3) The coiled tubule is thick-walled, with several ciliated cells very rich in glycogen. The luminal border shows specializations probably concerned with modifying the ultrafiltrate.  相似文献   

6.
Abstract A small syncytium or a pair of syncytia is present in the dorsal epidermis of the four species studied (Diceratocephala boschmai, Temnocephala dendyi, Craspedella sp., and Achenella sathonota). Unlike the other epidermal syncytia, the posttentacular ones may be deeply stained with silver nitrate. The basal zone of the posttentacular syncytia is occupied by abundant deep invaginations of the basal cell membrane with densely packed mitochondria between them. In one species, A. sathonota, the nuclei containing portions of the posttentacular syncytia are insunk into the parenchyma. Ultrastructurally, the posttentacular syncytia are similar to the excretory bladder (the distal portion of the protonephridial canal) of the same animals and to osmoregulatory epithelial chloride cells known from many animals. These data suggest that ion transport in this syncytium serves for osmoregulation and maintenance of ion balance. Despite extensive studies of the epidermis, no hints of such cells have ever been reported in other platyhelminths. The accessory osmoregulatory organ is probably an adaptation to life in the gill chamber of the crustacean hosts which are characterized by high ability to maintain osmotic and ionic balance in stressful conditions.  相似文献   

7.
The protonephridial system of Götte's larva of Stylochus mediterraneus was studied by electron microscopy. There is one protonephridium on each side of the body, formed by one terminal and one canal cell. The terminal filtration apparatus is formed by a single cell (the terminal cell) with several globular processes, the largest of which includes the nucleus. Fingers of cytoplasm (leptotriches) from each process penetrate the lumen surrounding the bundle of cilia and fingers from adjacent processes interdigitate to form a pattern of convoluted slits which constitute the weir. The single canal cell is inserted internally to the terminal cell at the top of the weir and encloses the lumen without a junction. Septate junctions are present between the terminal and canal cells. The lumen of the canal cell is smooth-walled for most of its length and cilia arise and terminate at all levels of the terminal and canal cells. Posterior to the larval mouth opening, the canal cell crosses the epithelium and the lumen ramifies to form the excretory opening. The terminal apparatus closely resembles that found in the freshwater planarian Bdellocephala brunnea .  相似文献   

8.
本研究应用透射电子显微镜研究了扩张莫尼茨绦虫原肾管的细胞学特征 ,莫尼茨绦虫原肾管的焰茎球为一个过滤器结构 ,类似于“挡河坝”样构造 ,此构造由端细胞和近管细胞外突形成的肋条 (或称杆 )相互交错排列而成。肋条之间由细胞外物质构成的“膜”结构连接 ,过滤作用通过该“膜”发生。焰细胞与近管细胞交界处有裂缝或孔与细胞外的结缔组织 (实质组织 )相通 ;原肾管的毛细排泄管细胞质索之间没有隔状联结 ;毛细排泄管及排泄管的管腔内有大量珠状微绒毛突起以增加表面积。从扩张莫尼茨绦虫及其它一些无脊椎动物原肾管的研究结果表明 ,原原肾管概念将焰细胞作为封闭的盲端已不再合适 ,需要进行修订 ,建议修订为 :原肾管是一种焰细胞系统 ,通常由焰细胞、管细胞和肾孔细胞组成 ,焰茎球作为过滤装置与周围的结缔组织 (实质组织 )有或没有裂缝 (孔 )相通  相似文献   

9.
Volker Lammert 《Zoomorphology》1985,105(5):308-316
Summary The fine structure of the protonephridia of Haplognathia rosea (Filospermoidea) and Gnathostomula paradoxa (Bursovaginoidea) is described. Each protonephridium consists of three different cells: (1) a monociliated terminal cell which constitutes the filtration area, (2) a nonciliated canal cell showing a special protonephridial outlet system, and (3) an intraepidermal cell — the nephroporus cell — constituting the nephroporus. The protonephridia are arranged serially. There is no canal system connecting the protonephridial units.Protonephridial characters in other Bilateria are considered. The pattern of characters in the protonephridia in the last common gnathostomulid stem species and presumed apomorphies in the protonephridia of the Gnathostomulida investigated are discussed.Abbreviations used in figures ac acessory centriole - AC additional epidermal cell - bb basal body - bl basal lamina - bm bundle of microvilli - c cilium - cc cilium duct cell - cd cilium duct - cr ciliary rootlet - crs structures resembling ciliary rootlets - di diplosome - ds desmosome - dy dictyosome - f filtration area - g granules - m mitochondrium - mv microvillus - n nucleus - NC nephroporus cell - np nephroporus - oc outlet canal - TC terminal cell - tl tubules of lacunar system  相似文献   

10.
Kieneke, A. and Hochberg, R. 2012. Ultrastructural observations of the protonephridia of Polymerurus nodicaudus (Gastrotricha: Paucitubulatina). —Acta Zoologica (Stockholm) 93 : 115–124. We studied different regions of the protonephridia of the limnic gastrotrich Polymerurus nodicaudus by means of light and electron microscopy to determine how freshwater species might differ from their marine relatives. Microscopic and ultrastructural characters are in accordance with another limnic species of Paucitubulatina, Chaetonotus maximus, whose protonephridial system has been previously reconstructed. Shared protonephridial characters of both species include the presence of highly elongate terminal organ cilia, microvilli, and the canal cell lumen as well as the presence of a conspicuous anterior loop of the protonephridial lumen. These features are not present in representatives of earlier, marine, paucitubulatan lineages (i.e., Xenotrichulidae) and so are assessed as evolutionary novelties that were likely important for the successful colonization of the freshwater environment.  相似文献   

11.
Riemann, O. and Ahlrichs, W.H. 2009. The evolution of the protonephridial terminal organ across Rotifera with particular emphasis on Dicranophorus forcipatus, Encentrum mucronatum and Erignatha clastopis (Rotifera: Dicranophoridae). —Acta Zoologica (Stockholm) 91 : 199–211 We report on the ultrastructure of the protonephridial terminal organ in three species of dicranophorid rotifers (Dicranophorus forcipatus, Encentrum mucronatum and Erignatha clastopis). Differences between the three species relate to shape and size, the morphology of the filter region and the number of microvilli and cilia inside the terminal organ. A comparison across Rotifera indicates that the terminal organs in Dforcipatus display a number of plesiomorphic characters, but are modified in Emucronatum and Erclastopis. This is in accordance with the results of phylogenetic analyses suggesting a basal position of Dforcipatus compared with the more derived species Emucronatum and Erclastopis. Moreover, we survey available data on the terminal organ in Rotifera and discuss its evolutionary transformations. The protonephridial terminal organ in the common ancestor of Rotifera consisted of a cytoplasmic cylinder with cilia united into a vibratile flame and a single circle of circumciliary microvilli. Depending on the topology on which characters are optimized, the site of ultrafiltration was formed by longitudinal cytoplasmic columns spanned by a fine filter diaphragm or by pores in the wall of the terminal organ. In several taxa of Rotifera, the terminal organ – probably independently – lost its circumciliary microvilli.  相似文献   

12.
The protonephridial terminal complex of Artioposthia is formed by one or two terminal cells, each with a nucleus located in the lateral wall of the flame bulb, and probably two proximal canal cells forming the wall of the protonephridial capillary. The weir is restricted to the proximal parts of the flame bulbs and consists of convoluted slits separated by thick cytoplasmic columns. Cross-striated ciliary rootlets running parallel with and obliquely or transversely to the longitudinal axis of the flame bulbs strengthen the walls of the flame bulbs and, to a lesser degree, that of the capillary. Numerous cristate mitochondria are present in the terminal and proximal canal cells. Cytoplasmic processes extend from the terminal cells into the adjacent tissue, and narrow internal leptotriches extend from the cytoplasm of the terminal cells into the lumen of the flame bulbs. The wall of the capillary contains many interconnected, liquid filled spaces that communicate with the lumen of the capillary, and two septate junctions. Phylogenetic implications of the findings are discussed.  相似文献   

13.
The protonephridial system of several Loricifera was studied by transmission electron microscopy. A larval specimen of Rugiloricus cf. cauliculus possesses two protonephridia, which are "capped" frontally by a compact mass of still undifferentiated gonadal cells. Each protonephridium consists of four monociliary terminal cells and four canal cells with a diplosome but no cilia. Because of incomplete series of sections and unsatisfactory fixation, the outleading cell(s) could not be detected. In a male specimen of Armorloricus elegans, each gonad contains two protonephridia that open into the gonadal lumen. Each protonephridium consists of two monociliary terminal cells, each forming a filter, two nonciliated canal cells, and two nephroporus cells. The protonephridial lumina of the latter cells fuse to one common lumen, which unites with the gonadal lumen. Preliminary observations on the protonephridia of a female Nanaloricus mysticus reveal a more complicated arrangement of interdigitating terminal and canal cells. One or two terminal cells form their own individual filter or four cells form a common compound filter. The cilium of the terminal cells of all species investigated are surrounded by a palisade of nine microvilli that support the filter barrier made of an extracellular matrix. An additional filter diaphragm could be traced between the pores in the cell wall of each terminal cell of A. elegans. The urogenital system of the Loricifera differs from that of the Priapulida in that the protonephridia of the former are completely integrated into the gonad, whereas the excretory organs of the latter open into the urogenital duct caudally of the gonads.  相似文献   

14.
Summary The copulatory organs in Macrostomum sp. and Microstomum sp. contain simple tubular stylets which are intracellular specializations. The stylet in Macrostomum sp. is produced in a syncytium covering part of the prostatic vesicle. The proximal region of the stylet surrounds the vesicle which contains six prostatic gland ducts and six accessory (sensory) cells containing ciliary rootlets. The stylet in Microstomum sp. is produced in an extension of a syncytium which lines the combined seminal-prostatic vesicle. The stylet is connected to the combined vesicle by a narrow bridge of matrix syncytium through which sperm, prostatic gland products and sensory cilia pass from the vesicle to the stylet lumen. In both species the matrix syncytium can be interpreted as a specialized terminal end of the male canal epithelium. Stylets of Turbellaria and other lower Metazoa are discussed in regards to structure (one or several pieces) and location (in separate cells, in a syncytium, or extracellular).Abbreviations used in figures ac accessory cell - b basal body - c cilium - cv combined vesicle - d prostatic gland duct - dc degenerative cell - di dictyosome - e epidermis - ed ejaculatory duct - g prostatic gland cell - h hemidesmosome - i intercellular matrix - im internal muscle - in intestine; - l lumen of male canal - lm longitudinal muscle - m matrix syncytium - mc male canal epithelial cell - mi microfilaments - mt microtubules - mu muscle cell - mv microvilli - n nucleus - np nerve process - ns neurosecretory (?) granule - p prostatic vesicle - pv prostatic part of combined vesicle - r rootlet - s stylet - sm stylet material - sp sperm - sv seminal part of combined vesicle  相似文献   

15.
The protonephridial system consists of terminal cell, protonephridial capillary, protonephridial tubule and efferent duct. The terminal cell is an elongated, thin-walled, fenestrated basket containing a ciliary flame circumscribed by a palisade of straight microvilli. The filtration area is confined to the terminal cell and consists of slits bridged by a filtration membrane. The cilia, as well as the microvilli, projects into the proximal bell-shaped part of the thin-walled protonephridial capillary. The terminal cells are often found in pairs connected to the same capillary, which has a very narrow lumen. The proximal part of the thick-walled, convoluted protonephridial tubule is ciliated and shows characteristic foldings of the luminal plasma membrane and numerous small vesicles in the cytoplasm. The cells of the following, non-ciliated part of the tubule have interdigitating lateral surfaces and the bases deeply invaginated to form compartments with numerous mitochondria; in the cytoplasm are many large vesicles, possibly containing lipid droplets, and small amounts of glycogen. The distal protonephridial tubule resembles various epithelia with an osmoregulatory function, including the vertebrate nephron.  相似文献   

16.
Summary The protonephridial terminal organs in the nemertean Tubulanus annulatus form an integral part of the blood vessel wall. Both endothelial and muscle-cell layers of the vessel's wall are discontinued at the site of each terminal organ. The terminal organs are usually composed of from one to three terminal cells enclosing a central lumen provided with many microvilli and separated from the blood vessel's lumen by a membranous filtration area. The latter is perforated by numerous winding clefts formed by interdigitation of minute cytoplasmic pedicels arising from processes issued by each of the involved terminal cells. Ultrafiltration of blood plasma takes place across a filtration membrane which spans the cleft system and the basal lamina of the terminal cells. Fluid is propelled into the lumen of the terminal organs through the activity of ciliary bundles, one for each terminal cell involved, perhaps supplemented by vascular turgor. All efferent conduits of the protonephridium have profuse infoldings of the luminal cell surfaces and/or numerous pinocytotic pits suggestive of reabsorption of substances from the primary urine.Abbreviations BL basal lamina - C cilium - CP coated pit - CT collecting tubule - CV inzcoated vesicle - D dictyosome - E endothelial cell - F fenestration of endothelial cell - FA filtration area - FM filtration membrane - G glycogen granule - LV lateral vessel - M mitochondrion - MC muscle cell - MV microvillus - N nucleus of terminal cell - NE nucleus of endothelial cell - NP nephridiopore - PC protonephridial capillary cell - PT protonephridial tubule - R rootlet - TC terminal cell  相似文献   

17.
Summary The protonephridial terminal organ in the nemertean Pantinonemertes californiensis is composed of two cells that are similar in size and shape and are mirror images of each other. Basally in the organ the two cells combine to form a binucleate cytoplasmic mass. Apically they are intimately joined to form a subcylindrical thin-walled weir apparatus; this part is supported by two opposed cytoplasmic columns running the length of the weir region, one originating from each of the two cells, and by a number of regularly spaced circular bars that arise from the two columns. The ciliary flame consists of 94–114 cilia that originate in the bases of the two cells, and it is surrounded by a palisade of incomplete circlets of long, straight microvilli. The convoluted protonephridial tubule is rich in structures that indicate intensive reabsorption from the primary urine. It is argued that the terminal organs in Pantinonemertes and Geonemertes are fundamentally similar and differ only in the amount of microtubules present in the longitudinal supports.Abbreviations BL basal lamina - CF ciliary flame - CT connective tissue - CV coated vesicle - E endocytotic pit - FM filtration membrane - G Golgi complex - LC longitudinal cytoplasmic column - M mitochondrion - MT microtubules - MV microvilli - N nucleus - NPC nucleus of protonephridial capillary cell - PC protonephridial capillary cell - R rootlets - TB transverse bar - TC terminal cell - WE weir, exterior of fenestrated wall - WI weir, interior of same  相似文献   

18.
David A. Doe 《Zoomorphology》1986,106(3):163-173
Summary The male reproductive system in Haplopharynx quadristimulus consists of paired testes, sperm ducts, seminal vesicles, seminal ducts, a copulatory organ containing prostatic vesicle and stylet apparatus, and the male canal. By electron microscopy all components appeared to be regional specializations of a canal extending from the testes to the body wall and lined by a multiciliated epithelium. The epithelium of the stylet apparatus contained six different cell types. One cell type (matrix syncytium) formed the stylet and the other five were located distal to the stylet/prostatic-vesicle junction along the male system epithelium. Each cell type was attached to the supporting intercellular matrix at a different level along the stylet apparatus. All cell types extended to the distal end of the stylet apparatus regardless of where they originated along its length. The cells in the apparatus lacked cilia, but one of the cell types contained rootlets. Modified rootlets or rootlet derivatives were possibly present in another cell type in the form of rootlet-like ribbons. The findings support the monophyly of the Macrostomida Haplopharyngida (by common occurrence of a matrix syncytium) and at the same time suggest their separation as two distinct taxa (by differences in the structure of the prostatic vesicle and other parts of the stylet apparatus).Abbreviations a accessory spine - c circular muscle - ce centriole - ci cilium - di dictyosome - e epithelial cell - ed ejaculatory duct - ep epidermal cell - f rootlet-like ribbon - g prostatic gland cell neck - g1 type I gland cell granules - g2 type II gland cell granules - g3 type III gland cell granules - h hemidesmosome - i intercellular matrix - im internal muscle - j septate junction - l stylet apparatus lumen - le spine lateral extension - lm longitudinal muscle - m matrix syncytium - mc male-canal epithelial cell - me male canal - mp male pore - mt microtubules - mv microvilli - n nucleus - nc nerve cell body - np nerve process - om oblique muscle - p prostatic vesicle epithelial cell - pv prostatic vesicle - r rootlet - s stylet - sa stylet apparatus - sc sensory receptor - sd sperm duct - se seminal duct - sl stylet lumen - sp spot desmosome - sr sperm - sv seminal vesicle - t terminal web - te testis - u ultrarhabdite - z zonula adhaerens - 2 cell type 2 - 3 cell type 3 - 4 cell type 4 - 6 cell type 6  相似文献   

19.
The excretory organs of Sphaerodorum flavum (Sphaerodoridae) were investigated by TEM and reconstructed from serial ultrathin sections. These organs are segmentally arranged paired protonephridia, which are in close association with a well-developed blood vascular system. Each protonephridium consists of a terminal part made up of two monociliary terminal cells (solenocytes), and a nephridioduct, formed by two cells. The two solenocytes lie close together. Each cilium is surrounded by 12 microvillar rods projecting from the perikaryon of each solenocyte. These rods form a weir-like structure in the coelomic space. The distal part of the weir is embedded in the proximal nephridioduct. The largest part of the cell bodies of the solenocytes, containing the nucleus, is lateral or basal to the weir-like structures. The lumen of the nephridioduct is formed by two multiciliated cells, which enclose the extracellular nephridial canal one behind the other. The canal opens through the nephropore beneath the cuticle without penetrating the cuticle. Both nephridioduct cells are surrounded by a blood vessel, which is partially folded into several layers. The significance of a simultaneous occurrence of protonephridial excretory organs and a well-developed blood vascular system as well as coelomic cavities is discussed. The results of this investigation indicate a close relationship of Sphaerodoridae to Phyllodocidae instead of to Syllidae within the Phyllodocida. Accepted: 27 November 2000  相似文献   

20.
The flame bulb of Prorhynchus is formed by a single cell. Its nucleus is not located in the cytoplasm at the base of the flame. Cilia of the flame have cross-striated hollow ciliary rootlets converging towards their tips. The maximum number of cilia counted was 13. The weir consists of a single row of longitudinal ribs that contain longitudinal filaments and possess regularly arranged protrusions along their surface appearing as transverse bands in horizontal section. A 'membrane' of extracellular material extends between the ribs. and loose material fills the places between the ribs, with a denser layer midway between adjacent ribs. Distally, the ribs fuse to form a continuous tube without a junction. Small protonephridial capillaries lack junctions, larger ducts have lateral flames and patches of long microvilli. Large excretory ducts open into a ciliated and lamellated cavity which is connected by a narrow canal to the excretory pore. The terminal part of the canal close to the pore possesses many cilia and microvilli. Phylogenetic implications of the findings are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号