首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic mechanism of NADP(+)-dependent 3 alpha-hydroxysteroid dehydrogenase and NAD(+)-dependent 3 alpha(17 beta)-hydroxysteroid dehydrogenase, purified from hamster liver cytosol, was studied in both directions. For 3 alpha-hydroxysteroid dehydrogenase, the initial velocity and product inhibition studies indicated that the enzyme reaction sequence is ordered with NADP+ binding to the free enzyme and NADPH being the last product to be released. Inhibition patterns by Cibacron blue and hexestrol, and binding studies of coenzyme and substrate are also consistent with an ordered bi bi mechanism. For 3 alpha(17 beta)-hydroxysteroid dehydrogenase, the steady-state kinetic measurements and substrate binding studies suggest a random binding pattern of the substrates and an ordered release of product; NADH is released last. However, the two enzymes transferred the pro-R-hydrogen atom of NAD(P)H to the carbonyl substrate.  相似文献   

2.
A kinetic analysis of two homogeneous rat liver steroid (3 alpha-hydroxysteroid and 17 beta-hydroxysteroid) UDP-glucuronosyltransferases was conducted using bisubstrate kinetic analysis, product inhibition studies, and dead-end competitive inhibition studies. Double reciprocal plots of initial velocity versus substrate concentration, using bisubstrate kinetic analysis, gave a sequential mechanism. Product inhibition studies were compatible with either a rapid equilibrium, random-order kinetic mechanism or an ordered Theorell-Chance mechanism. Results of dead-end competitive inhibition studies excluded an ordered Theorell-Chance mechanism. The cumulative results are consistent with a rapid equilibrium random-order sequential kinetic mechanism for the glucuronidation of testosterone by purified 17 beta-hydroxysteroid UDP-glucuronosyltransferase and of androsterone by purified 3 alpha-hydroxysteroid UDP-glucuronosyltransferase.  相似文献   

3.
The kinetic mechanism of NADPH-dependent aldehyde reductase II and aldose reductase, purified from human placenta, has been studied using L-glucuronate and DL-glyceraldehyde as their respective substrates. For aldehyde reductase II, the initial velocity and product inhibition studies (using NADP and gulonate) indicate that the enzyme reaction sequence is ordered with NADPH binding to the free enzyme and NADP being the last product to be released. Inhibition patterns using menadione (an analog of the aldehydic substrate) and ATP-ribose (an analog of NADPH) are also consistent with a compulsory ordered reaction sequence. Isotope effects of deuterium-substituted NADPH (NADPD) also corroborate the above reaction scheme and indicate that hydride transfer is not the sole rate-limiting step in the reaction sequence. For aldose reductase, initial velocity patterns, product, and dead-end inhibition studies indicate a random binding pattern of the substrates and an ordered release of product; the coenzyme is released last. A steady-state random mechanism is also consistent with deuterium isotope effects of NADPD on the reaction sequence catalyzed by this enzyme. However, the hydride transfer step seems to be more rate determining for aldose reductase than for aldehyde reductase II.  相似文献   

4.
The kinetic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae was determined using initial velocity studies in the absence and presence of product and dead end inhibitors in both reaction directions. Data suggest a steady state random kinetic mechanism. The dissociation constant of the Mg-homoisocitrate complex (MgHIc) was estimated to be 11 +/- 2 mM as measured using Mg2+ as a shift reagent. Initial velocity data indicate the MgHIc complex is the reactant in the direction of oxidative decarboxylation, while in the reverse reaction direction, the enzyme likely binds uncomplexed Mg2+ and alpha-ketoadipate. Curvature is observed in the double-reciprocal plots for product inhibition by NADH and the dead-end inhibition by 3-acetylpyridine adenine dinucleotide phosphate when MgHIc is the varied substrate. At low concentrations of MgHIc, the inhibition by both nucleotides is competitive, but as the MgHIc concentration increases, the inhibition changes to uncompetitive, consistent with a steady state random mechanism with preferred binding of MgHIc before NAD. Release of product is preferred and ordered with respect to CO2, alpha-ketoadipate, and NADH. Isocitrate is a slow substrate with a rate (V/E(t)) 216-fold slower than that measured with HIc. In contrast to HIc, the uncomplexed form of isocitrate and Mg2+ bind to the enzyme. The kinetic mechanism in the direction of oxidative decarboxylation of isocitrate, on the basis of initial velocity studies in the absence and presence of dead-end inhibitors, suggests random addition of NAD and isocitrate with Mg2+ binding before isocitrate in rapid equilibrium, and the mechanism approximates rapid equilibrium random. The Keq for the overall reaction measured directly using the change in NADH as a probe is 0.45 M.  相似文献   

5.
Like arginyl-tRNA synthetases from other organisms, human placental arginyl-tRNA synthetase catalyzes the arginine-dependent ATP-PPi exchange reaction only in the presence of tRNA. We have investigated the order of substrate addition and product release of this human enzyme in the tRNA aminoacylation reaction by using initial velocity experiments and dead-end product inhibition studies. The kinetic patterns obtained are consistent with a random Ter Ter sequential mechanism, instead of the common Bi Uni Uni Bi ping-pong mechanism for all other human aminoacyl-tRNA synthetases so far investigated in this respect.  相似文献   

6.
The kinetic mechanism of turkey gizzard smooth muscle myosin-light-chain kinase was investigated using the isolated 20-kDa light chain of myosin as substrate. The kinetic and product inhibition patterns of the forward reaction indicated an ordered sequential mechanism in which MgATP bound first, ADP was released last. The order of substrate binding and product release was confirmed independently by competitive, dead-end inhibition patterns obtained using the non-hydrolizable ATP analog adenosine 5'-[beta,gamma-imido]triphosphate. The mechanism was also characterized by a relatively strong product inhibition by ADP and a weak one by phosphorylated 20-kDa light-chain myosin, in addition to a significant inhibition by the latter product via a formation of a dead-end complex. [gamma-32P]ATP in equilibrium with [32P]phosphorylated light chain isotope-exchange data were consistent with the deduced mechanism and with the presence of the latter dead-end complex.  相似文献   

7.
Kinetic studies of fructokinase I of pea seeds   总被引:3,自引:0,他引:3  
Fructokinase I of pea seeds has been purified to homogeneity and the enzyme shown to be monomeric, with a molecular weight of 72,000 +/- 4000. The reaction mechanism was investigated by means of initial velocity studies. Both substrates inhibited the enzyme; the inhibition caused by MgATP was linear-uncompetitive with respect to fructose whereas that caused by D-fructose was hyperbolic-noncompetitive against MgATP. The product D-fructose 6-phosphate caused hyperbolic-noncompetitive inhibition with respect to both substrates. MgADP caused noncompetitive inhibition, which gave intercept and slope replots that were linear with D-fructose but hyperbolic with MgATP. Free Mg2+ caused linear-uncompetitive inhibition when either substrate was varied. L-Sorbose and beta, gamma-methyleneadenosine 5'-triphosphate were used as analogs of D-fructose and MgATP, respectively. Inhibition experiments using these compounds indicated that substrate addition was steady-state ordered, with MgATP adding first. The product inhibition experiments were found to be consistent with a steady-state random release of products. The substrate inhibition caused by MgATP was most likely due to the formation of an enzyme-MgATP-product dead-end complex, whereas that caused by D-fructose was due to alternative pathways in the reaction mechanism. The inhibition caused by Mg2+ can be explained in terms of a dead-end complex with either a central complex or an enzyme-product complex.  相似文献   

8.
The reaction of glutamate dehydrogenase (l-glutamate: NAD+ oxidoreductase (deaminating) EC 1.4.1.2) from lupin nodules has been investigated in the direction of deamination by means of steady state velocity studies in the absence of products and inhibition studies with products and substrate analogs. The results are qualitatively and quantitatively consistent with a fully ordered reaction mechanism in which NAD+ binds to the enzyme first followed by l-glutamate. The order of product release is proposed to be NH4+ followed by 2-oxoglutarate and then NADH. In addition, product inhibition data indicate the formation of an enzyme-NAD-oxoglutarate dead-end complex.  相似文献   

9.
Steady-state kinetic mechanism of Ras farnesyl:protein transferase.   总被引:7,自引:0,他引:7  
The steady-state kinetic mechanism of bovine brain farnesyl:protein transferase (FPTase) has been determined using a series of initial velocity studies, including both dead-end substrate and product inhibitor experiments. Reciprocal plots of the initial velocity data intersected on the 1/[s] axis, indicating that a ternary complex forms (sequential mechanism) and suggesting that the binding of one substrate does not affect the binding of the other. The order of substrate addition was probed by determining the patterns of dead-end substrate and product inhibition. Two nonhydrolyzable analogues of farnesyl diphosphate, (alpha-hydroxyfarnesyl)phosphonic acid (1) and [[(farnesylmethyl)hydroxyphosphinyl]methyl]phosphonic acid (2), were both shown to be competitive inhibitors of farnesyl diphosphate and noncompetitive inhibitors of Ras-CVLS. Four nonsubstrate tetrapeptides, CV[D-L]S, CVLS-NH2, N-acetyl-L-penicillamine-VIM, and CIFM, were all shown to be noncompetitive inhibitors of farnesyl diphosphate and competitive inhibitors of Ras-CVLS. These data are consistent with random order of substrate addition. Product inhibition patterns corroborated the results found with the dead-end substrate inhibitors. We conclude that bovine brain FPTase proceeds through a random order sequential mechanism. Determination of steady-state parameters for several physiological Ras-CaaX variants showed that amino acid changes affected the values of KM, but not those of kcat, suggesting that the catalytic efficiencies (kcat/KM) of Ras-CaaX substrates depend largely upon their relative binding affinity for FPTase.  相似文献   

10.
Steady state initial velocity studies were carried out to determine the kinetic mechanism of human liver aldehyde dehydrogenase. Intersecting double reciprocal plots obtained in the absence of inhibitors demonstrated that the dehydrogenase reaction proceeded by sequential addition of both substrates prior to release of products. Dead end inhibition patterns obtained with coenzyme and substrate analogues (e.g. thionicotinamide-AD+ and chloral hydrate) indicated that NAD+ and aldehyde can bind in random fashion. The patterns of inhibition by the product NADH and of substrate inhibition by glyceraldehyde were also consistent with this mechanism. However, comparisons between kinetic constants associated with the dehydrogenase and esterase activities of this enzyme suggested that most of the dehydrogenase reaction flux proceeds via formation of an initial binary NAD+-enzyme complex over a wide range of substrate and coenzyme concentrations.  相似文献   

11.
The preceding paper in this journal has reported that pyruvate could be substituted for 2-oxo-glutarate as a substrate of saccharopine dehydrogenase [epsilon-N-(L-glutaryl-2)-L-lysine:NAD oxidoreductase (L-lysine-forming) in the direction of reductive condensation. In the present communication, the kinetic mechanism of saccharopine dehydrogenase reaction with NADH, L-lysine and pyruvate as reactants is reported. The results of initial velocity study, inhibition studies with lysine analogs and a reaction product, NAD+, are consistent with an ordered mechanism with the coenzyme binding first and pyruvate last. The reaction mechanism is at variance with that of the normal reaction in which 2-oxoglutarate is the substrate, in that the order of addition of the amino and oxo acid substrates is reversed. This fact suggests that there exists a small degree of randomness in the binding of amino and oxo acid substrates. From a product inhibition study, NAD+ was shown to be the last reactant released. Saccharopine [epsilon-N-(L-glutaryl-2)-L-lysine] was found to act as a potent dead-end inhibitor of the condensation reactions (of lysine and 2-oxoglutarate, and of lysine and pyruvate) by forming an abortive E. NADH. saccharopine complex.  相似文献   

12.
The kinetic properties of wheat germ sucrose phosphate synthetase, which catalyzes the reaction UDP-glucose + fructose 6-phosphate → UDP + sucrose 6-phosphate have been studied. A plot of the reciprocal initial velocity versus reciprocal substrate concentration gave a series of intersecting lines indicating a sequential mechanism. Product inhibition studies showed that UDP was competitive with UDP-glucose and noncompetitive with fructose 6-phosphate. A dead-end inhibitor, inorganic phosphate, was competitive with UDP-glucose and noncompetitive with fructose 6-phosphate. The results of initial velocity and product and dead-end inhibition studies suggested that the addition of substrates to the enzyme follows an ordered mechanism.  相似文献   

13.
14.
Studies on sucrose synthetase. Kinetic mechanism   总被引:2,自引:0,他引:2  
The kinetic properties of Helianthus tuberosus sucrose synthetase, which catalyzes the reaction UDP-glucose + fructose = UDP + sucrose, have been studied. A plot of the reciprocal initial velocity versus reciprocal substrate concentration gave a series of intersecting lines indicating a sequential mechanism. Product inhibition studies showed that UDP-glucose was competitive with UDP, whereas fructose was competitive with sucrose and uncompetitive with UDP. On the other hand, a dead-end inhibitor, salicine, was competitive with sucrose and uncompetitive with UDP. The results of initial velocity, product, and dead-end inhibition studies suggested that the addition of substrates to the enzyme follows an ordered mechanism.  相似文献   

15.
Initial rate studies at pH 7.6 with three aldehydes, product inhibition patterns with NADH and dead-end inhibition with adenosine diphosphoribose show that the kinetic mechanism of glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle cannot be ordered, and support an enzyme-substitution mechanism. Deviations from Michaelis-Menten behaviour are consistent with negative interactions in the binding of NAD+ and instability of the species E(NAD)3 and E(NAD)4. Inhibition with large concentrations of phosphate and arsenate indicates competition for a binding site for glyceraldehyde 3-phosphate, and is not found with glyceraldehyde as substrate.  相似文献   

16.
Initial velocity and product inhibition studies of Mn2+-activated and FDP-modified Mg2+-activated pyruvate kinase from Concholepas concholepas, were performed. Evidence is presented to show that the Mn2+-enzyme catalyzes an ordered sequential mechanism, with ADP being the first substrate and pyruvate the last product. The results presented are consistent with a random combination of reactants with the FDP-modified Mg2+-activated enzyme and the formation of the dead-end complexes enzyme ADP-ATP and enzyme-PEP-ATP.  相似文献   

17.
Steady-state kinetic studies including initial velocity, NADPH product inhibition, dead-end inhibition, and combined dead-end and product inhibition measurements with purified rat liver glucose-6-phosphate dehydrogenase indicate a sequential and obligatory addition of substrates in the order of NADP+, glucose-6-P for the catalytic pathway at pH 8.0. Although instability of 6-phosphoglucono-delta-lactone precluded product inhibition experiments which might directly exclude an enzyme-6-phosphoglucono-delta-lactone complex, the absence of an enzyme-glucose-6-P complex suggests that the enzyme-lactone product is unlikely and the release of products is also ordered, with NADPH released last. Consideration of the kinetic constants (Ka = 2.0 muM, Kiq = 13 muM) and cellular concentration of the substrates and products suggests extensive inhibition of the enzyme in vivo and control by the NADPH/NADP+ ratios. Circular dichroism spectra of the enzyme in 20 mM phosphate buffer at pH 7.0 and 25 degrees C indicate 51% helix and 33% pleated sheet structures which is considerably different from results (14% helix) with yeast enzymes.  相似文献   

18.
The kinetic mechanism of bovine liver argininosuccinate synthetase has been determined at pH 7.5. The initial velocity and product and dead-end inhibition patterns are consistent with the ordered addition of MgATP, citrulline, and aspartate, followed by the ordered release of argininosuccinate, MgPPi, and AMP. The mechanism is also in accord with the formation of citrulline-adenylate as a reactive intermediate [O. Rochovansky, and S. Ratner, (1967) J. Biol. Chem. 242, 3839-3849]. No evidence was obtained for nonlinear double-reciprocal plots with any of the three substrates.  相似文献   

19.
AKT/PKB is a phosphoinositide-dependent serine/threonine protein kinase that plays a critical role in the signal transduction of receptors. It also serves as an oncogene in the tumorigenesis of cancer cells when aberrantly activated by genetic lesions of the PTEN tumor suppressor, phosphatidylinositol 3-kinase, and receptor tyrosine kinase overexpression. Here we have characterized and compared kinetic mechanisms of the three AKT isoforms. Initial velocity studies revealed that all AKT isozymes follow the sequential kinetic mechanism by which an enzyme-substrate ternary complex forms before the product release. The empirically derived kinetic parameters are apparently different among the isoforms. AKT2 showed the highest Km value for ATP, and AKT3 showed the highest kcat value. The patterns of product inhibition of AKT1, AKT2, and AKT3 by ADP were all consistent with an ordered substrate addition mechanism with ATP binding to the enzymes prior to the peptide substrate. Further analysis of steady state kinetics of AKT1 in the presence of dead-end inhibitors supported the finding and suggested that the AKT family of kinases catalyzes reactions via an Ordered Bi Bi sequential mechanism with ATP binding to the enzyme prior to peptide substrate and ADP being released after the phosphopeptide product. These results suggest that ATP is an initiating factor for the catalysis of AKT enzymes and may play a role in the regulation AKT enzyme activity in cells.  相似文献   

20.
Formaldehyde, a major industrial chemical, is classified as a carcinogen because of its high reactivity with DNA. It is inactivated by oxidative metabolism to formate in humans by glutathione-dependent formaldehyde dehydrogenase. This NAD(+)-dependent enzyme belongs to the family of zinc-dependent alcohol dehydrogenases with 40 kDa subunits and is also called ADH3 or chi-ADH. The first step in the reaction involves the nonenzymatic formation of the S-(hydroxymethyl)glutathione adduct from formaldehyde and glutathione. When formaldehyde concentrations exceed that of glutathione, nonoxidizable adducts can be formed in vitro. The S-(hydroxymethyl)glutathione adduct will be predominant in vivo, since circulating glutathione concentrations are reported to be 50 times that of formaldehyde in humans. Initial velocity, product inhibition, dead-end inhibition, and equilibrium binding studies indicate that the catalytic mechanism for oxidation of S-(hydroxymethyl)glutathione and 12-hydroxydodecanoic acid (12-HDDA) with NAD(+) is random bi-bi. Formation of an E.NADH.12-HDDA abortive complex was evident from equilibrium binding studies, but no substrate inhibition was seen with 12-HDDA. 12-Oxododecanoic acid (12-ODDA) exhibited substrate inhibition, which is consistent with a preferred pathway for substrate addition in the reductive reaction and formation of an abortive E.NAD(+).12-ODDA complex. The random mechanism is consistent with the published three-dimensional structure of the formaldehyde dehydrogenase.NAD(+) complex, which exhibits a unique semi-open coenzyme-catalytic domain conformation where substrates can bind or dissociate in any order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号