共查询到19条相似文献,搜索用时 234 毫秒
1.
长效重组蛋白药物的研究进展 总被引:21,自引:2,他引:19
重组蛋白药物经静脉和皮下注射后通常半衰期较短,目前延长蛋白药物半衰期的方法主要基于三种原理:1、增大蛋白药物分子量;2、利用血浆药物平衡;3、减少免疫原性。本文针对构建突变体、PEG化修饰和与血清白蛋白融合三种延长重组蛋白药物半衰期的方法,及其已上市的和正在研发中的长效重组蛋白药物的特征、半衰期和免疫原性问题进行了综述。 相似文献
2.
基因工程蛋白和多肽药物是第一代基因工程药物的主体,已广泛应用于临床,但这类药物的血浆半衰期一般只有数十分钏至数小时,疾病治疗时往往需要反复频繁注射, 相似文献
3.
4.
5.
丁锡申 《中国生物工程杂志》2005,25(4):78-78
近年来,通过重组蛋白类药物研究寻找新的药用蛋白质的同时,对已上市的重组蛋白类药物结构做重新改变,使其活性更强,在体内的半衰期延长,从而达到减小剂量和减少注射次数的目的。目前已批准几种新的改变结构的重组蛋白类药物上市,市场前景很好,在研的改构重组蛋白类药物更多。 相似文献
6.
重组蛋白经聚乙二醇(PEG)化修饰在优化药物代谢动力学和药效学性质的同时,使药物的结构和质量属性变得更为复杂,修饰后的重组蛋白在结构、理化性质和生物学活性等方面与未修饰的重组蛋白相比有较大差异,对其质量控制的研究必须结合品种自身独特的质量属性。现从蛋白质药物质量控制的角度,对PEG化蛋白质药物的重要质量属性的质控难点和相应检测方法进行综述,以期对工艺开发和生产上的实际工作有所帮助。 相似文献
7.
融合蛋白技术应用于生物制药行业已超过25年,其目的为改善原来天然蛋白的性质,从而具有新的理化特征和生物学功能,其中最为显著的特点是改善了小分子蛋白及多肽半衰期短的缺陷。基于该技术所诞生的融合蛋白类药物已成为当前生物药研发的热点。结合已上市融合蛋白类药物,通过与传统多肽蛋白类药物比较,重点突出融合蛋白类药物自身特点,主要从融合抗体Fc段和人血清白蛋白以延长小分子蛋白及多肽半衰期的角度对融合蛋白药物长效化策略进行评述;对融合蛋白类药物在体内的吸收、分布、代谢和排泄的显著特征进行概述;综述该类药物在体内的分析技术并指出当前分析技术的优缺点及发展方向,为长效化融合蛋白药物的设计、分析研究与开发提供依据和思路。 相似文献
8.
重组蛋白药物在体内存留时间的长短,极大地影响到药物的使用剂量和治疗效果。防止多肽在体内迅速降解、延长半衰期成为蛋白质工程药物改造的重要课题之一。经过许多学者多年来的不懈研究,不少长效多肽药物已经上市,还有一些正在进行临床研究。综述了几种多肽药物常用的长效改造方法如化学修饰、基因融合、点突变以及药物制剂释放系统的改造。 相似文献
9.
转基因植物生产重组药物蛋白的研究进展 总被引:1,自引:0,他引:1
转基因植物作为一种新型生物反应器,可以安全、经济、有效的生产各种重组蛋白,以此作为大规模的重组药物生产平台备受瞩目。但是表达量低、下游处理复杂、糖基化结构改变是植物反应器中经常遇到的困难,这些困难限制了植物表达重组药物蛋白的商业化发展。针对这些问题,人们分别采用不同的生物技术策略加以解决,对此做一简要综述。 相似文献
10.
11.
Leopold Grillberger Thomas R. Kreil Sonia Nasr Manfred Reiter 《Biotechnology journal》2009,4(2):186-201
Mammalian cells are the expression system of choice for therapeutic proteins, especially those requiring complex post-translational modifications. Traditionally, these cells are grown in medium supplemented with serum and other animal- or human-derived components to support viability and productivity. Such proteins are also typically added as excipients and stabilizers in the final drug formulation. However, the transmission of hepatitis B in the 1970s and of hepatitis C and HIV in the 1980s through plasma-derived factor VIII concentrates had catastrophic consequences for hemophilia patients. Thus, due to regulatory concerns about the inherent potential for transmission of infectious agents as well as the heterogeneity and lack of reliability of the serum supply, a trend has emerged to eliminate the use of plasma-derived additives in the production and formulation of recombinant protein therapeutics. This practice began with products used in the treatment of hemophilia and is progressively expanding throughout the entire industry. The plasma-free method of producing recombinant therapeutics is accomplished by the use of both cell culture media and final product formulations that do not contain animal- or human-derived additives. A number of recombinant therapeutic proteins for the treatment of several different diseases have been produced by plasma-free processes, with the objective of improving safety by eliminating blood-borne pathogens or by reducing immunogenicity. This review describes the factors that drove the development of plasma-free protein therapeutics and provides examples of advances in manufacturing that have made possible the removal of human and animal-derived products from all steps of recombinant protein production. 相似文献
12.
Patrick Hossler Christopher Chumsae Christopher Racicot David Ouellette Alexander Ibraghimov Daniel Serna 《MABS-AUSTIN》2017,9(4):715-734
Protein glycosylation is arguably the paramount post-translational modification on recombinant glycoproteins, and highly cited in the literature for affecting the physiochemical properties and the efficacy of recombinant glycoprotein therapeutics. Glycosylation of human immunoglobulins follows a reasonably well-understood metabolic pathway, which gives rise to a diverse range of asparagine-linked (N-linked), or serine/threonine-linked (O-linked) glycans. In N-linked glycans, fucose levels have been shown to have an inverse relationship with the degree of antibody-dependent cell-mediated cytotoxicity, and high mannose levels have been implicated in potentially increasing immunogenicity and contributing to less favorable pharmacokinetic profiles. Here, we demonstrate a novel approach to potentially reduce the presence of high-mannose species in recombinant human immunoglobulin preparations, as well as facilitate an approximate 100% replacement of fucosylation with arabinosylation in Chinese hamster ovary cell culture through media supplementation with D-arabinose, an uncommonly used mammalian cell culture sugar substrate. The replacement of fucose with arabinose was very effective and practical to implement, since no cell line engineering or cellular adaptation strategies were required. Arabinosylated recombinant IgGs and the accompanying reduction in high mannose glycans, facilitated a reduction in dendritic cell uptake, increased FcγRIIIa signaling, and significantly increased the levels of ADCC. These aforementioned effects were without any adverse changes to various structural or functional attributes of multiple recombinant human antibodies and a bispecific DVD-Ig. Protein arabinosylation represents an expansion of the N-glycan code in mammalian expressed glycoproteins. 相似文献
13.
抑制性免疫检查点PD-1或CTLA-4靶向治疗药物已用于肿瘤的临床治疗,但单一靶点药物会有耐药发生,联合使用同时封闭多个靶点可提高疗效,因此拟构建一个可封闭多个靶点的新型重组蛋白。首先设计并合成了一个由人类PD-1和CTLA-4两个受体的胞外功能域组成并且C端带6×His标签的分泌型重组融合蛋白rPC编码序列,插入真核细胞表达载体pLVX-IRES-ZsGreen1,稳定转染HEK293细胞,收集细胞培养上清,以亲和方法纯化重组蛋白rPC,通过实时荧光定量PCR检测多个人类肿瘤细胞系中PD-1配体PD-L1、PD-L2和CTLA-4配体CD80、CD86的表达,以选择相对高表达的细胞,利用细胞免疫荧光染色方法检验rPC与肿瘤细胞的结合能力,并用CCK-8法检测rPC是否对肿瘤细胞的生长有影响。结果表明,重组融合蛋白rPC可由稳定转染表达载体的HEK293细胞表达并分泌,纯化后的rPC可以与PD-1和CTLA-4配体表达相对较高的肺癌细胞NCI-H226结合,并且rPC处理对其生长并无直接影响,与预期一致。成功获得的重组融合蛋白rPC可用于进一步的体内外功能研究,也为今后研发新型多靶点肿... 相似文献
14.
The production of recombinant proteins using mammalian cell expression systems is of growing importance within biotechnology, largely due to the ability of specific mammalian cells to carry out post-translational modifications of the correct fidelity. The Glutamine Synthetase-NS0 system is now one such industrially important expression system.Glutamine synthetase catalyses the formation ofglutamine from glutamate and ammonia. NS0 cellscontain extremely low levels of endogenous glutaminesynthetase activity, therefore exogenous glutaminesynthetase can be used efficiently as a selectablemarker to identify successful transfectants in theabsence of glutamine in the media. In addition, theinclusion of methionine sulphoximine, an inhibitor ofglutamine synthetase activity, enables furtherselection of those clones producing relatively highlevels of transfected glutamine synthetase and henceany heterologous gene which is coupled to it. Theglutamine synthetase system technology has been usedfor research and development purposes during thisdecade and its importance is clearly demonstrated nowthat two therapeutic products produced using thissystem have reached the market place. 相似文献
15.
Lee AY Chung HK Bae EK Hwang JS Sung BW Cho CW Kim JK Lee K Han JY Lee CT Youn HJ 《Biotechnology letters》2003,25(3):205-211
Granulocyte-Macrophage colony stimulating factor (GM-CSF) and Granulocyte colony stimulating factor (G-CSF) are cytokines involved in the differentiation of bone marrow progenitor cells into myeloid cells. They also activate mature myeloid cells to mediate a variety of antimicrobial activities and inflammatory responses. Recombinant GM-CSF and G-CSF proteins have been used to treat various diseases including cancer and hematopoietic diseases and to isolate peripheral blood progenitor cells for bone marrow transplantation. A plasmid construct expressing recombinant human G-CSF/GM-CSF fusion protein has now been prepared by linking the human G-CSF and GM-CSF coding regions and the recombinant fusion protein has been successfully expressed in E. coli. The recombinant human G-CSF/GM-CSF fusion protein was extracted and purified from the cellular inclusion and refolded into the biologically active form to show colony stimulating activity. The recombinant fusion protein exhibited colony stimulating activity on human bone marrow cell cultures, indicating that the linkage of GM-CSF and G-CSF by a linker peptide may not interrupt activities of the cytokines in the fusion protein. The colony forming unit of the fusion protein was also higher than those of the cultures treated with the same molar numbers of the recombinant human GM-CSF and G-CSF separately, which suggests that the fusion protein presumably retains both G-CSF and GM-CSF activities. 相似文献
16.
人C型凝集素样受体(human C-type lectin-like receptor-2, hCLEC-2)是新克隆的Ⅱ型跨膜受体分子,研究表明,它在病毒感染,血小板活化、聚集,肿瘤转移和信号转导等方面发挥重要作用.通过制备针对其胞外段糖类识别结构域(CRD)的抗体来进一步研究该蛋白质的生物学功能及相关信号通路.构建了pET23b-CRD重组表达质粒,将其转化到大肠杆菌BL21中,用于hCLEC-2-CRD-His融合蛋白的表达,经聚丙烯酰胺凝胶电泳检测表明,融合重组蛋白成功获得了高效表达,分子质量在18 ku左右.经鉴定,发现hCLEC-2-CRD-His表达于包涵体中.为获得高纯度的可溶性蛋白,将包涵体溶于6 mol/L盐酸胍,并用镍柱进行纯化.纯化后的蛋白质经过透析、再折叠后作为抗原,免疫家兔制备抗血清,抗血清经蛋白G亲合层析纯化后用Western blot等方法进行鉴定,结果显示该抗体能特异性地检测到GFP-hCLEC-2和GFP-CRD.通过使用该抗体,进一步发现,在用PMA和IL-4诱导单核细胞THP-1分化的过程中,内源性hCLEC-2蛋白水平下调,初步揭示了hCLEC-2的表达和单核细胞的分化存在一定的联系.因此,该抗体的成功制备将为进一步研究CLEC-2的生物学功能提供有利的条件. 相似文献
17.
18.
Microbial biocatalysts are used in a wide range of industries to produce large scale quantities of proteins, amino acids, and commodity chemicals. While the majority of these processes use glucose or other low-cost sugars as the substrate, Bacillus methanolicus is one example of a biocatalyst that has shown sustained growth on methanol as a carbon source at elevated temperature (50-53°C optimum) resulting in reduced feed and utility costs. Specifically, the complete chemical process enabled by this approach takes methane from natural gas, and following a low-cost conversion to methanol, can be used for the production of high value products. In this study, production of recombinant green fluorescent protein (GFPuv) by B. methanolicus is explored. A plasmid was constructed that incorporates the methanol dehydrogenase (mdh) promoter of B. methanolicus MGA3 together with the GFPuv gene. The plasmid, pNW33N, was shown to be effective for expression in other Bacillus strains, although not previously in B. methanolicus. A published electroporation protocol for transformation of B. methanolicus was modified to result in expression of GFP using plasmid pNW33N-mdh-GFPuv (pNmG). Transformation was confirmed by both agarose gel electrophoresis and by observation of green fluorescence under UV light exposure. The mass yield of cells and protein were measured in shake flask experiments. The optimum concentration of methanol for protein production was found to be at 200 mM. Higher concentrations than 200 mM resulted in slightly higher biomass production but lower amounts of recombinant protein. 相似文献
19.
Jason S. Buhrman Jamie E. Rayahin Laura C. Cook Michael J. Federle Richard A. Gemeinhart 《Biotechnology progress》2013,29(5):1150-1157
Cell lytic peptides are a class of drugs that can be used to selectively kill invading organisms or diseased cells. Several of these peptides have been identified as potential therapeutics. Herein, we report a novel process for purifying recombinant melittin, a cell lytic peptide that inserts into the membranes of cells causing cell lysis, from Escherichia coli. The process involves surfactant and low pH to solubilize melittin fusion proteins from the insoluble fraction of bacterial lysates. We are able to significantly improve purity of the final product and confirm the activity of the peptide. The process yields recombinant melittin that is effective when used to treat U‐87 MG glioma cells and inhibits growth of the gram‐positive pathogenic bacterium Streptococcus pyogenes. We demonstrate a method of repeated extraction of the insoluble protein fraction with mild detergent at a low pH that is able to generate a yield of pure, soluble melittin of ~0.5–1 mg/L of E. coli culture. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1150–1157, 2013 相似文献