首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Regulation of Hemoglobin Function in Mammals   总被引:1,自引:0,他引:1  
This survey of hemoglobin function in mammals reveals a broadrange in oxygen affinity. The concentration of red cell 2,3-DPGvaries widely among groups of mammals. Those animals (feloidsand ruminants) that have very low levels of this intracellularmediator have hemoglobins of intrinsically low oxygen affinitywhich fail to respond to the addition of 2,3-DPG. Mammals whichhave adapted to various types of hypoxia tend to have increasedoxygen affinity, primarily mediated through reduced levels ofred cell 2,3 DPG. In contrast mammals who are experimentallysubjected to low oxygen tensions develop decreased oxygen affinityowing to increased red cell 2,3-DPG. Mammals employ one of threedifferent mechanisms for the maintenance of higher oxygen affinityof fetal red cells, compared to maternal red cells. Many of these phenomena can be satisfactorily explained at themolecular level but their adaptational significance is lessclear.  相似文献   

2.
D B?ning  G Enciso 《Blut》1987,54(6):361-368
In blood of 21 anemic patients and 8 normal subjects (N) three oxygen dissociation curves each were measured at different pH values to calculate Bohr coefficients after acidification with CO2 (BCCO2) or fixed acid (BCFA), and other important parameters of oxygen affinity. The patients had either low hemoglobin or red cell production (L: n = 11, 7.3 g/dl Hb) or high erythrocyte production combined with high loss (H: n = 10, 7.8 g/dl Hb). The standard half saturation pressure P50 (pH 7.4, 37 degrees C) was equally elevated in both anemic groups (L: 30.5, H: 30.8, N: 26.7 mmHg), as well as the diphosphoglycerate concentration (DPG) (L: 18.7, H: 18.6, N: 12.7 mumol/g Hb). The red cell pH of the anemics was lower than for the N (approximately 0.045 units) causing part of the difference in P50. Hill's "n" tended to high values in the anemics except at low O2-saturation in the H. For BCCO2 no significant difference among the groups was observed. BCFA, however, increased in the H at low SO2 compared to the N and L. The cause for most of the changes in hemoglobin oxygen affinity in anemics was the high [DPG]. The combination of high P50 and high "n" value as in the L seems to be most advantageous for tissue oxygenation.  相似文献   

3.
Hemoglobin function can be modulated by the red cell membrane but some mechanistic details are incomplete. For example, the 43-kDa chymotryptic fragment of the cytoplasmic portion of red cell membrane Band 3 protein and its corresponding N-terminal 11-residue synthetic peptide lower the oxygen affinity of hemoglobin but effects on cooperativity are unclear. Using highly purified preparations, we also find a lowered Hill coefficient (n values <2) at subequivalent ratios of Band 3 fragment or of synthetic peptide to Hb, resulting in an oxygen affinity that is moderately decreased and a partially hyperbolic shape for the O2 binding curve. Both normal HbA and sickle HbS display this property. Thus, the determinant responsible for the Hb cooperativity decreases by the 43-kDa fragment resides within its first 11 N-terminal residues. This effect is observed in the absence of chloride and is reversed by its addition. As effector to Hb ratios approach equivalence or with saturating chloride normal cooperativity is restored, and oxygen affinity is further lowered because the shape of the oxygen binding curve becomes completely sigmoidal. The relative efficiencies of 2,3-diphosphoglycerate (DPG), the 43-kDa Band 3 fragment, and the 11-residue synthetic peptide in lowering cooperativity are very similar. The findings are explained based on the stereochemical mechanism of cooperativity because of two populations of T-state hemoglobin tetramers, one with bound effector and the other with free (Perutz, M. F. (1989) Q. Rev. Biophys. 22, 139-237). As a result of this property, hemoglobin at the membrane inner surface in contact with the N-terminal region of Band 3 could preferentially bind O2 at low oxygen tension and then release it upon saturation with 2,3-diphosphoglycerate in the interior of the red cell. Membrane modulation of hemoglobin oxygen affinity has particularly interesting implications for the polymerization of hemoglobin S in the sickle red cell.  相似文献   

4.
Comparative data on quaternary structure, cooperativity, Bohr effect and regulation by organic phosphates are reviewed for vertebrate hemoglobins. A phylogeny of hemoglobin function in the vertebrates is deduced. It is proposed that from the monomeric hemoglobin of the common ancestor of vertebrates, a deoxy dimer, as seen in the lamprey, could have originated with a single amino acid substitution. The deoxy dimer has a Bohr effect, cooperativity and a reduced oxygen affinity compared to the monomer. One, or two, additional amino acid substitutions could have resulted in the origin of a tetrameric deoxy hemoglobin which dissociated to dimers on oxygenation. Gene duplication, giving incipient alpha and beta genes, probably preceded the origin of a tetrameric oxyhemoglobin. The origin of an organic phosphate binding site on the tetrameric hemoglobin of an early fish required only one, or two, amino acid substitutions. ATP was the first organic phosphate regulator of hemoglobin function. The binding of ATP by hemoglobin may have caused the original elevation in the concentration of ATP in the red blood cells by relieving end product inhibition of ATP synthesis. The switch from regulation of hemoglobin function by ATP to regulation by DPG may have been a consequence of the curtailment of oxidative phosphorylation in the red blood cell. The basic mechanisms by which ATP and DPG concentrations can respond to strss on the oxygen transport system were present before the origin of an organic phosphate binding site on hemoglobin. A switch from ATP regulation to IP5 regulation occurred in the common ancestor of birds.  相似文献   

5.
Oxygen binding curves (OEC) for red cell suspensions have a biphasic shape and reduced n50 values when the concentration of 2,3-diphosphoglycerate (DPG) is lowered by aging or experimental procedures. The mechanism for the abnormal shape of the OEC has been related to variations in the activity of free DPG. DPG binds to tetrameric Hb at a single site, and in red cells its normal concentration is equivalent to that of tetrameric Hb. This equivalence renders the oxygen affinity of Hb and the shape of the OEC very sensitive to small changes in the activity of DPG. The OEC for stripped Hb solutions in the presence of nonsaturating concentrations of DPG also exhibit a biphasic shape but with much larger changes in the n values than observed for red cells. Upon addition of chloride, a known competitor of DPG binding to Hb, the shape of the OEC becomes similar to that of red cell suspensions with the same DPG/Hb ratio. Studies on Hb solutions in the presence of varying concentrations of DPG, but without chloride, have revealed that the cofactor shifts the entire OEC to the right, including both its upper and lower asymptotes. This finding indicates that DPG lowers the intrinsic oxygen affinity for both the T and R states. Theoretical considerations leading to a successful modeling of OEC obtained under varying conditions of DPG and chloride require an expanded two-state allosteric model in which allowance is made for DPG-dependent variations in the dissociation constants of oxygen for both the T and R conformations.  相似文献   

6.
In oxygen affinity characteristics bird blood appears to haveseveral features that distinguish it from mammalian blood. Fordomesticated species at least the range of oxygen half saturationvalues is extremely wide. A difference in the shape of the oxygendissociation curve has been recorded by several authors withan increase in sigmoidocity with increasing oxygen saturation.There is evidence that the oxygen affinity determining organicphosphate of bird red blood cells inositol pentaphosphate (IP5)is relatively metabolically inert. This suggests that modulationof blood oxygen affinity is primarily achieved by altering theIP5 hemoglobin interaction rather than varying IP5 levels perse. In contrast to mammals carbon dioxide has no direct effecton whole blood oxygen affinity for some bird species (hen chickgoose) or it may cause the oxygen affinity to increase (pigeonflamingo). Carbon dioxide is a blood oxygen affinity modulatorof some flexibility its effect in both direction and magnitudebeing dependent on the hemoglobin type red cell pH and organicphosphate levels. The physiological significance of these distinguishingfeatures is discussed.  相似文献   

7.
A rapidly induced and readily reversible shift in the affinity of hemoglobin for oxygen has been demonstrated. The shift, similar to the Bohr effect, is independent of PCO2 or pH changes. It occurred within 30 min of hemodilution and was seen in portal venous blood but not arterial blood. A hypothesis is suggested involving a phasic alteration in levels of 2,3-diphosphoglycerate (DPG) or ATP binding to hemoglobin. It is proposed that, following hemodilution, the degree of these phosphates to hemoglobin increases on passage through the intestinal vascular bed. The increased DPG binding to hemoglobin results in displacement of additional oxygen. As the blood becomes reoxygenated, the levels of DPG-hemoglobin binding decline and DPG is displaced from the hemoglobin by oxygen.  相似文献   

8.
The Bohr effect was measured in normal whole blood and in blood with low DPG concentration as a function of oxygen saturation. pH was changed by varying CO2 concentration (CO2 Bohr effect) or by addition of isotonic NaOH or HC1 at constant PCO2 (fixed acid Bohr effect). At nornal DPG concentration CO2 Bohr effect was -0.52 at 50% blood oxygen saturation, increasing in magnitude at lower saturation and decreasing in magnitude at higher saturation. In DPG depleted blood with base excess (BE) similar to 0 meq/1, there was similar dependence of CO2 Bohr effect on oxygen saturation. At BE similar to -10 meq/1, influence of saturation was comparable, but the magnitude of the Bohr effect was markedly increased at all saturations. Fixed acid Bohr effect at normal DPG concentration was -0.45 at saturations of 50-90% but decreased at lower saturations. In DPG-depleted blood fixed acid Bohr effect averaged about -0.33 with minimal variation with saturation. Influence of DPG on oxygen affinity was greater at intermediate saturations and less at saturations below 20% and above 80%. Effect of CO2, independent of pH, was many fold greater at lower oxygen saturations than at higher saturations. These results support the suggestion that the alpha chain of hemoglobin is the site of the initial oxygenation reaction. Physiologically they indicate that the relative contribution of CO2 and fixed acid, as well as the level of oxygen saturation and DPG concentration, may be important in determining PO2 of capillary blood and resulting oxygen delivery.  相似文献   

9.
1. A major locus with two alleles is responsible for large differences in erythrocyte 2,3-diphosphoglycerate (DPG) levels in Rattus norvegicus. Blood from homozygous High-DPG, homozygous Low-DPG and heterozygous animals was used to measure blood indices and red cell enzyme activities. 2. Significant differences between groups were found in DPG levels, white blood cell counts and hemoglobin levels. 3. The results suggest that none of the red cell enzymes assayed is structurally or quantitatively different in the three groups.  相似文献   

10.
R E Benesch  R Edalji  R Benesch 《Biochemistry》1977,16(12):2594-2597
The interaction of three inositol esters, inositol hexaphosphate (IHP), inositol pentaphosphate (IPP), and inositol hexasulfate (IHS), with hemoglobin has been investigated. The proton uptake method was used to obtain the six binding constants for deoxy- and oxyhemoglobin. These data combined with oxygen binding curves over a range of cofactor concentrations were used to test theoretical and empirical equations relating the affinity of hemoglobin for oxygen and allosteric effectors. The Bohr and Haldane coefficients in the presence of the inositol esters are unequal at low, but not at high, concentration of the cofactors. The maximum value reached by both parameters increases with the number of negative charges of the polyanion. 2,3-Diphosphoglycerate (DPG) differs sharply from the inositol esters since even at high concentrations of this cofactor, the Haldane coefficient remains elevated. This is a reflection of the negligible affinity of DPG for fully oxygenated hemoglobin.  相似文献   

11.
We studied the oxygenation of mammalian hemoglobins: mouse (Mus musculus molossinus), rabbit (Oryctolagus cuniculus domesticus), Japanese monkey (Macaca fuscata), man (Homo sapiens), sheep (Ovis aries), llama (Lama glama), pig (Sus scrofa domesticus), cow (Bos taurus domesticus) and horse (Equus caballus), in the absence of 2,3-diphosphoglycerate (DPG) and compared their oxygen affinity in relation to the body weight. The negative correlation between body weight and the oxygen affinity of the whole blood, observed by Schmidt-Nielsen and Larimer (1958), was not observed in the absence of DPG. Our results indicated that an adaptive evolution proposed for hemoglobin in terms of its oxygen affinity vs body weight of the animal can only be appreciated with DPG.  相似文献   

12.
BackgroundAerobic organisms have to overcame the dangerous species derived from the unquestionable favorable effects due to the utilization of oxygen in the cellular respiration. 2,3-Diphosphoglycerate (DPG) could be one of the molecules able to perform different role inside the cells and (from the data obtained from our experimental work) may help cellular components, in particular hemoglobin, to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS).MethodsTherefore, we have investigated the kinetic and antioxidant properties of this molecule against the main biological reactive species and the protective role of this molecules on hemoglobin treated with strong oxidant.ResultsDPG, at the physiological concentration is able to scavenge hydroxyl radical, peroxyl radical, cation radicals and to chelate iron in the reduced state. Moreover it is able to avoid oxidation of iron inside the hemoglobin following treatment with nitrite and tert-butyl hydroperoxide (t-BOOH). On the other side, it is not able to protect membrane components from oxidative burning. This different behavior towards radical species is probably linked to the polarity of the molecule and also the high levels of charged groups present on the surface of DPG, that avoid the possibility to act in an environment almost completely hydrophobic, as inside the membrane, where reactive species produce the main damages during the reactions of peroxidation.ConclusionsThis is the first paper dealing with the potential role of DPG not only as a modulator of oxygen affinity in hemoglobin, but also as a scavenger of radicals.  相似文献   

13.
M F Colombo  F A Seixas 《Biochemistry》1999,38(36):11741-11748
The effect of anions on the stability of different functional conformations of Hb is examined through the determination of the dependence of O(2) affinity on water activity (a(w)). The control of a(w) is effected by varying the sucrose osmolal concentration in the bathing solution according to the "osmotic stress" method. Thus, the hydration change following Hb oxygenation is determined as a function of Cl(-) and of DPG concentration. We find that only approximately 25 additional water molecules bind to human Hb during the deoxy-to-oxy conformation transition in the absence of anions, in contrast with approximately 72 that bind in the presence of more than 50 mM Cl(-) or more than 15 microM DPG. We demonstrate that the increase in the hydration change linked with oxygenation is coupled with anion binding to the deoxy-Hb. Hence, we propose that the deoxy-Hb coexists in two allosteric conformations which depend on whether anion is bound or not: the tense T-state, with low oxygen affinity and anion bound, or a new allosteric P-state, with intermediate oxygen affinity and free of bound anions. The intrinsic oxygen affinity of this unforeseen P-state and the differential binding of Cl(-), DPG, and H(2)O between states P and T and P and R are characteristics which are consistent with those expected for a putative intermediate allosteric state of Hb. These findings represent a new opportunity to explore the structure-function relationships of hemoglobin regulation.  相似文献   

14.
THERE is a decrease in the O2 affinity of mammalian haemoglobin (Hb) as the levels of 2,3-DPG or ATP are increased, which is explained by an allosteric effect on the HbO2 binding1,2. Similar observations on amphibians3 and fish4, which have molar ratios of ATP to Hb similar to those of DPG to Hb in mammals, suggest that red cell organic phosphates modulate Hb function in all vertebrates. The adaptation of mammals to various hypoxic stresses involves reduced HbO2 affinity5–9, the attendant increase in O2 “unloading” capacity being mediated by an increase in the concentration of red cell 2,3-DPG. We have found the opposite response in hypoxic fish and suggest that an increased O2 affinity results in increased O2 transport for the fish.  相似文献   

15.
Studies on the interaction of zinc with human hemoglobin   总被引:3,自引:0,他引:3  
Zn has previously been shown to increase the oxygen affinity of both normal and sickle red blood cells. Experiments are presented which demonstrate that the oxygen affinity effect of Zn is due to a Zn-hemoglobin binding mechanism rather than a Zn-2,3 diphosphoglycerate binding mechanism. Further a large shift (6 mm Hg) in the oxygen affinity of a red cell-saline suspension occurs with a low Zn/hemoglobin (tetramer) molar ratio (0.4). Zn had no influence on the Bohr effect of hemoglobin but it did decrease the Hill coefficient. Hemoglobin binding experiments using partially purified hemoglobin indicated that Zn can bind to more than one amino acid residue but it appears that the amino acid residue with the highest binding capacity for Zn is also the residue involved in the oxygen affinity effect of Zn. Hydrogen ion concentration (pH 5–8) had no influence on the Zn/hemoglobin ratios obtained in these binding experiments. The possible (and the improbable) Zn binding sites on the hemoglobin molecule are discussed.  相似文献   

16.
There exists a difference in oxygen affinity between fetal andmaternal bloods in almost all vertebrates examined and thisdifference in affinities probably facilitates oxygen transferto the fetus. It is likely that the high oxygen affinity offetal blood represents a biochemical pre-adaptation from anancestral oviparous embryo for oxygen uptake in a relativelyhypoxic environment. In most cases, the maternal-fetal differencein blood oxygen affinities is due to the characteristics ofthe fetal red cell and not due to any changes in the adult redcell during pregnancy. These characteristics are based on thepresence of a unique fetal hemoglobin with an intrinsicallyhigh affinity for oxygen or on the absence of high red cellconcentrations of organic phosphates—allosteric modulatorsof hemoglobin function. However, in several species of snake,representing different families, it appears that pregnancy isassociated with apronounced decrease in the oxygen affinityof the adult red cell. This suggests that the blood of the pregnantfemale is better able to unload oxygen to the fetus than couldthe blood of thenonpregnant adult. The maternal-fetal differencein blood oxygen affinities in these species isprobably due tothe characteristics of the fetal red cell as well as to thechange in the affinity of the adult cell during pregnancy. Nonetheless,although the magnitude of the pregnancy-associated change inoxygen affinity of the adult cell in these snakes suggests thatit is physiologically significant, the actual significance remainsto be determined.  相似文献   

17.
Bis(3,5-dibromosalicyl)fumarate (I) reacts preferentially with oxyhemoglobin to cross-link the two beta 82 lysine residues within the 2,3-diphosphoglycerate (DPG) binding site and as a result markedly increases the solubility of deoxyhemoglobin S. The cross-link acts by perturbing the acceptor site for Val 6 within the sickle cell fiber (Chatterjee, R., Walder, R. Y., Arnone, A., and Walder, J. A. (1982) Biochemistry 21, 5901-5909). In the present studies we have compared a large number of analogs of I to determine the structural features of the reagent required for specificity and for transport into the red cell. Both electrostatic and hydrophobic interactions contribute to the binding of these compounds at the DPG site. The optimal position for the negatively charged groups on the cross-linking agent for productive binding is adjacent to the ester as in the original salicylic acid derivatives. There is a direct correlation between the reactivity toward hemoglobin and the hydrophobicity of the substituent attached at the para position. Phenyl and substituted phenyl derivatives as in the analgesic, antiinflammatory drug diflunisal are particularly effective. These groups probably interact with hydrophobic residues of the amino-terminal tripeptide and the EF corner of the beta chains adjacent to the DPG binding site. Although bis(3,5-dibromosalicyl)fumarate is very reactive toward hemoglobin in solution, it is much less effective in modifying hemoglobin within the red cell. The reaction with intracellular hemoglobin was shown to be limited by competing hydrolysis of the reagent catalyzed at the outer surface of the erythrocyte membrane. Inactivation of the red cell membrane acetylcholinesterase with phenylmethylsulfonyl fluoride did not inhibit this reaction. Introduction of a single methyl group onto the carbon-carbon double bond of the fumaryl moiety decreases the lability of the ester 10-fold, due to steric effects, and allows the reagent to be taken up by the red cell and modify intracellular hemoglobin. The kinetics of transport of the methylfumarate derivative, bis(3,5-dibromosalicyl)mesaconate, are first-order, consistent with passive diffusion. The attachment of larger alkyl groups onto the cross-link bridge further enhances the transport of the reagent into the red cell. The solubility of deoxyhemoglobin S cross-linked with the butylfumarate derivative was found to be increased by almost 10% compared to the original fumarate diester.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Adult hemoglobin and fetal hemoglobin were obtained from Japanese monkey (Macaca fuscata) and their oxygen equilibrium characteristics were studied. (1) The oxygen affinity of fetal hemoglobin was higher than that of adult hemoglobin both in the presence and absence of 2,3-diphosphoglycerate. The presence of diphosphoglycerate lowers the oxygen affinity of adult hemoglobin much greater than does that of HbF and the diphosphoglycerate levels of red cells of adult and newborn monkeys are about the same. (2) The intensity of the Bohr effect, as expressed by -deltalogP50/deltapH, at pH 7.4 was in the order of fetal hemoglobin-diphosphoglycerate greater than adult hemoglobin-diphosphoglycerate greater than fetal hemoglobin greater than adult hemoglobin.  相似文献   

19.
Based on the properties of two low oxygen affinity mutated hemoglobins (Hb), we have engineered a double mutant Hb (rHb beta YD) in which the beta F41Y substitution is associated with K82D. Functional studies have shown that the Hb alpha 2 beta 2(C7)F41Y exhibits a decreased oxygen affinity relative to Hb A, without a significantly increased autooxidation rate. The oxygen affinity of the natural mutant beta K82D (Hb Providence-Asp) is decreased due to the replacement of two positive charges by two negative ones at the main DPG-binding site. The functional properties of both single mutants are interesting in the view of obtaining an Hb-based blood substitute, which requires: (1) cooperative oxygen binding with an overall affinity near 30 mm Hg at half saturation, at 37 degrees C, and in the absence of 2,3 diphosphoglycerate (DPG), and (2) a slow rate of autooxidation in order to limit metHb formation. It was expected that the two mutations were at a sufficient distance (20 A) that their respective effects could combine to form low oxygen affinity tetramers. The double mutant does display additive effects resulting in a fourfold decrease in oxygen affinity; it can insure, in the absence of DPG, an oxygen delivery to the tissues similar to that of a red cell suspension in vivo at 37 degrees C. Nevertheless, the rate of autooxidation, 3.5-fold larger than that of Hb A, remains a problem.  相似文献   

20.
We have developed two strains of hooded rats with differing erythrocyte oxygen affinities by selection on red cell 2,3-diphosphoglycerate levels. Genetic studies have shown that these strains differ at one DPG-level-determining locus. This article reports the results of a study which involved measurement of plasma cholesterol levels in rats from the strains and the F2 progeny of strain intercrosses. Low-DPG strain rats, with high oxygen affinity, had significantly higher mean cholesterol levels than High-DPG rats. Animals from the extremes of the F2 distribution of DPG levels showed similar, significantly different mean cholesterol levels, indicating that the negative association between DPG and cholesterol levels in strain rats was not due to inadvertent fixation of unrelated genes during selection on DPG. The possibility is discussed that high oxygen affinity, brought about by low DPG levels, may be causative in increasing cholesterol levels.This work was supported by an NIH Training Grant (5-T01-GM-0071) and a Michigan Heart Association Grant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号