首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SSV1 is a virus infecting the extremely thermophilic archaeon Sulfolobus shibatae. The viral-encoded integrase is responsible for site-specific integration of SSV1 into its host genome. The recombinant enzyme was expressed in Escherichia coli, purified to homogeneity, and its biochemical properties investigated in vitro. We show that the SSV1 integrase belongs to the tyrosine recombinases family and that Tyr(314) is involved in the formation of a 3'-phosphotyrosine intermediate. The integrase cleaves both strands of a synthetic substrate in a temperature-dependent reaction, the cleavage efficiency increasing with temperature. A discontinuity was observed in the Arrhenius plot above 50 degrees C, suggesting that a conformational transition may occur in the integrase at this temperature. Analysis of cleavage time course suggested that noncovalent binding of the integrase to its substrate is rate-limiting in the cleavage reaction. The cleavage positions were localized on each side of the anticodon loop of the tRNA gene where SSV1 integration takes place. Finally, the SSV1 integrase is able to cut substrates harboring mismatches in the binding site. For the cleavage step, the chemical nature of the base in position -1 of cleavage seems to be more important than its pairing to the opposite strand.  相似文献   

2.
The first structure of a catalytic domain from a hyperthermophilic archaeal viral integrase reveals a minimal fold similar to that of bacterial HP1 integrase and defines structural elements conserved across three domains of life. However, structural superposition on bacterial Holliday junction complexes and similarities in the C-terminal tail with that of eukaryotic Flp suggest that the catalytic tyrosine and an additional active-site lysine are delivered to neighboring subunits in trans. An intramolecular disulfide bond contributes significant thermostability in vitro.  相似文献   

3.
Structure-switching signaling aptamers are nucleic acids that change shape upon binding to a specific ligand. Previously, we applied a new in vitro selection strategy to isolate structure-switching RNA aptamers responsive to the aminoglycoside antibiotic tobramycin. Here, we report the results of mutational analysis, secondary structure modeling, and ligand-specificity studies that suggest a mechanism for tobramycin-triggered structure switching.  相似文献   

4.
Mutant alleles of SEC4, an essential gene required for the final stage of secretion in yeast, have been generated by in vitro mutagenesis. Deletion of the two cysteine residues at the C terminus of the protein results in a soluble non-functional protein, indicating that those two residues are required for normal localization of Sec4p to secretory vesicles and the plasma membrane. A mutant allele of SEC4 generated to mimic an activated, transforming allele of H-ras, as predicted, does not bind GTP. The presence of this allele in cells containing wild-type SEC4 causes a secretory defect and the accumulation of secretory vesicles. The results of genetic studies indicate that this allele behaves as a dominant loss of function mutant and as such prevents wild-type protein from functioning properly. We propose a model in which Sec4p cycles between an active and an inactive state in order to mediate the fusion of vesicles to the plasma membrane.  相似文献   

5.
Single-strand selective monofunctional uracil-DNA glycosylase (SMUG1), previously thought to be a backup enzyme for uracil-DNA glycosylase, has recently been shown to excise 5-hydroxyuracil (hoU), 5-hydroxymethyluracil (hmU) and 5-formyluracil (fU) bearing an oxidized group at ring C5 as well as an uracil. In the present study, we used site-directed mutagenesis to construct a series of mutants of human SMUG1 (hSMUG1), and tested their activity for uracil, hoU, hmU, fU and other bases to elucidate the catalytic and damage-recognition mechanism of hSMUG1. The functional analysis of the mutants, together with the homology modeling of the hSMUG1 structure based on that determined recently for Xenopus laevis SMUG1, revealed the crucial residues for the rupture of the N-glycosidic bond (Asn85 and His239), discrimination of pyrimidine rings through π–π stacking to the base (Phe98) and specific hydrogen bonds to the Watson–Crick face of the base (Asn163) and exquisite recognition of the C5 substituent through water-bridged (uracil) or direct (hoU, hmU and fU) hydrogen bonds (Gly87–Met91). Integration of the present results and the structural data elucidates how hSMUG1 accepts uracil, hoU, hmU and fU as substrates, but not other oxidized pyrimidines such as 5-hydroxycytosine, 5-formylcytosine and thymine glycol, and intact pyrimidines such as thymine and cytosine.  相似文献   

6.
Jiang YL  Stivers JT 《Biochemistry》2002,41(37):11236-11247
The DNA repair enzyme uracil DNA glycosylase (UDG) locates unwanted uracil bases in genomic DNA using a remarkable base-flipping mechanism in which the entire deoxyuridine nucleotide is rotated from the DNA base stack into the enzyme active site. Enzymatic base flipping has been described as a three-step process involving phosphodiester backbone pinching, base extrusion through active pushing and plugging by a leucine side chain that inserts in the DNA minor groove, and, finally, pulling by hydrogen-bonding groups that interact with the extrahelical base. Here we employ mutagenesis in combination with transient kinetic approaches to assess the functional roles of six conserved enzymatic groups of UDG that have been implicated in the "pinch, push, plug, and pull" base-flipping mechanism. Our results show that these mutant enzymes are capable of flipping the uracil base from the duplex, but that many of these mutations prevent a subsequent induced fit conformational step in which catalytic groups of UDG dock with the flipped-out base. These studies support our previous model for base flipping in which a conformational gating step closely follows base extrusion from the DNA duplex [Stivers, J. T., et al. (1999) Biochemistry 38, 952-963]. A model that accounts for the temporal and functional roles of these side chain interactions along the reaction pathway for base flipping is presented.  相似文献   

7.
Tn4430 is a distinctive transposon of the Tn3 family that encodes a tyrosine recombinase (TnpI) to resolve replicative transposition intermediates. The internal resolution site of Tn4430 (IRS, 116 bp) contains two inverted repeats (IR1 and IR2) at the crossover core site, and two additional TnpI binding motifs (DR1 and DR2) adjacent to the core. Deletion analysis demonstrated that DR1 and DR2 are not required for recombination in vivo and in vitro. Their function is to provide resolution selectivity to the reaction by stimulating recombination between directly oriented sites on a same DNA molecule. In the absence of DR1 and/or DR2, TnpI-mediated recombination of supercoiled DNA substrates gives a mixture of topologically variable products, while deletion between two wild-type IRSs exclusively produces two-noded catenanes. This demonstrates that TnpI binding to the accessory motifs DR1 and DR2 contributes to the formation of a specific synaptic complex in which catalytically inert recombinase subunits act as architectural elements to control recombination sites pairing and strand exchange. A model for the organization of TnpI/IRS recombination complex is presented.  相似文献   

8.
lambda Integrase (Int) has the distinctive ability to bridge two different and well separated DNA sequences. This heterobivalent DNA binding is facilitated by accessory DNA bending proteins that bring flanking Int sites into proximity. The regulation of lambda recombination has long been perceived as a structural phenomenon based upon the accessory protein-dependent Int bridges between high-affinity arm-type (bound by the small N-terminal domain) and low-affinity core-type DNA sites (bound by the large C-terminal domain). We show here that the N-terminal domain is not merely a guide for the proper positioning of Int protomers, but is also a context-sensitive modulator of recombinase functions. In full-length Int, it inhibits C-terminal domain binding and cleavage at the core sites. Surprisingly, its presence as a separate molecule stimulates the C-terminal domain functions. The inhibition in full-length Int is reversed or overcome in the presence of arm-type oligonucleotides, which form specific complexes with Int and core-type DNA. We consider how these results might influence models and experiments pertaining to the large family of heterobivalent recombinases.  相似文献   

9.
10.
The bacteriophage lambda integrase protein (lambda Int) belongs to a family of tyrosine recombinases that catalyze DNA rearrangements. We have determined a crystal structure of lambda Int complexed with a cleaved DNA substrate through a covalent phosphotyrosine bond. In comparison to an earlier unliganded structure, we observe a drastic conformational change in DNA-bound lambda Int that brings Tyr342 into the active site for cleavage of the DNA in cis. A flexible linker connects the central and the catalytic domains, allowing the protein to encircle the DNA. Binding specificity is achieved through direct interactions with the DNA and indirect readout of the flexibility of the att site. The conformational switch that activates lambda Int for DNA cleavage exposes the C-terminal 8 residues for interactions with a neighboring Int molecule. The protein interactions mediated by lambda Int's C-terminal tail offer a mechanism for the allosteric control of cleavage activity in higher order lambda Int complexes.  相似文献   

11.
12.
J W Chen  J Lee  M Jayaram 《Cell》1992,69(4):647-658
Each recombination event mediated by the Flp recombinase is the sum of four strand breakage and reunion reactions executed in two steps of two-strand exchanges. The reaction requires four Flp monomers. The key catalytic residue in Flp is Tyr-343. Arg-191, His-305, and Arg-308 appear to facilitate the cleavage and exchange steps of recombination. These four residues constitute the invariant tetrad of the Int family site-specific recombinases. Complementation tests between "step-arrest" mutants of Flp suggest that each Flp protomer harbors a "fractional active site." Hybrid "half site-recombinase" complexes reveal that efficient catalysis occurs when the Arg-His-Arg triad is present on one Flp monomer and the active site Tyr on a second monomer. Strand cleavage by an Flp monomer occurs virtually exclusively on the half site to which its partner protein is bound (cleavage in trans), and almost never on the half site to which it is bound (cleavage in cis). Trans-cleavage by Flp can provide a means for functionally exchanging Flp monomers between two DNA partners. Such a mechanism would be germane to recombination, since cleavage and rejoining in cis can only restore the parental substrate configuration and cannot yield recombinants.  相似文献   

13.
Briggs GD  Gordon SL  Dickson PW 《Biochemistry》2011,50(9):1545-1555
Tyrosine hydroxylase (TH) performs the first and rate-limiting step in the synthesis of catecholamines, which feed back to regulate the enzyme by irreversibly binding to a high-affinity site and inhibiting TH activity. Phosphorylation of Ser40 relieves this inhibition by allowing dissociation of catecholamine. We have recently documented the existence of a low-affinity catecholamine binding which is dissociable, is not abolished by phosphorylation, and inhibits TH by competing with the essential cofactor, tetrahydrobiopterin. Here, we have substituted a number of active site residues to determine the structural nature of the low- and high-affinity sites. E332D and Y371F increased the IC(50) of dopamine for the low-affinity site 10-fold and 7 0-fold, respectively, in phosphorylated TH, indicating dramatic reductions in affinity. Only 2-4-fold increases in IC(50) were measured in the nonphosphorylated forms of E332D and Y371F and also in L294A and F300Y. This suggests that while the magnitude of low-affinity site inhibition in wild-type TH remains the same upon TH phosphorylation as previously shown, the active site structure changes to place greater importance on E332 and Y371. Changes to high affinity binding were also measured, including a loss of competition with tetrahydrobiopterin for E332D, A297L, and Y371F and a decreased ability to inhibit catalysis (V(max)) for A297L and Y371F. The common roles of E332 and Y371 indicate that the low- and high-affinity catecholamine binding sites are colocalized in the active site, but due to simultaneous binding, may exist in separate monomers of the TH tetramer.  相似文献   

14.
Sixteen substitution mutations of the conserved DvExNPGP sequence, implicated in cardiovirus and aphthovirus primary polyprotein cleavage, were created in encephalomyocarditis virus cDNA, expressed, and characterized for processing activity. Nearly all the mutations severely decreased the efficiency of the primary cleavage reaction during cell-free synthesis of viral precursors, indicating a stringent requirement for the natural sequence in this processing event. When representative mutations were tested in full-length genomic contexts, they were lethal and no revertants were observed. Not only were the primary cleavage reactions deficient in these polyproteins, but subsequent cleavage of P1 by endogenous or exogenous 3C pro was also impaired. This indicates that primary cleavage has a role in the proper processing of the viral capsid precursor.  相似文献   

15.
In DNA site-specific recombination catalysed by tyrosine recombinases, two pairs of DNA strands are sequentially exchanged between separate duplexes and the mechanisms that confer directionality to this theoretically reversible reaction remain unclear. The tyrosine recombinase TnpI acts at the internal resolution site (IRS) of the transposon Tn4430 to resolve intermolecular transposition products. Recombination is catalysed at the IRS core sites (IR1–IR2) and is regulated by adjacent TnpI-binding motifs (DR1 and DR2). These are dispensable accessory sequences that confer resolution selectivity to the reaction by stimulating synapsis between directly repeated IRSs. Here, we show that formation of the DR1–DR2-containing synapse imposes a specific order of activation of the TnpI catalytic subunits in the complex so that the IR1-bound subunits catalyse the first strand exchange and the IR2-bound subunits the second strand exchange. This ordered pathway was demonstrated for a complete recombination reaction using a TnpI catalytic mutant (TnpI-H234L) partially defective in DNA rejoining. The presence of the DR1- and DR2-bound TnpI subunits was also found to stabilize transient recombination intermediates, further displacing the reaction equilibrium towards product formation. Implication of TnpI/IRS accessory elements in the initial architecture of the synapse and subsequent conformational changes taking place during strand exchange is discussed.  相似文献   

16.
Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1) is a transmembrane protein predominantly expressed in macrophages. The binding of CD47 on RBCs to SHPS-1 on macrophages is implicated in inhibition of phagocytosis of the former cells by the latter. We have now shown that forced expression in mouse RAW264.7 macrophages of a mutant version (SHPS-1-4F) of mouse SHPS-1, in which four tyrosine phosphorylation sites are replaced by phenylalanine, markedly promoted Fc gammaR-mediated phagocytosis of mouse RBCs or SRBCs. Forced expression of another mutant form (SHPS-1-deltaCyto) of mouse SHPS-1, which lacks most of the cytoplasmic region, did not promote such phagocytosis. Similarly, forced expression of a rat version of SHPS-1-4F, but not that of rat wild-type SHPS-1 or SHPS-1-deltaCyto, in RAW264.7 cells enhanced Fc gammaR-mediated phagocytosis of RBCs. Tyrosine phosphorylation of endogenous SHPS-1 as well as its association with Src homology 2 domain-containing protein tyrosine phosphatase-1 were not markedly inhibited by expression of SHPS-1-4F. Furthermore, the attachment of IgG-opsonized RBCs to RAW264.7 cells was markedly increased by expression of SHPS-1-4F, and this effect did not appear to be mediated by the interaction between CD47 and SHPS-1. These data suggest that inhibition by SHPS-1 of phagocytosis in macrophages is mediated, at least in part, in a manner independent of the transinteraction between CD47 and SHPS-1. In addition, the cytoplasmic region as well as tyrosine phosphorylation sites in this region of SHPS-1 appear indispensable for this inhibitory action of SHPS-1. Moreover, SHPS-1 may regulate the attachment of RBCs to macrophages by an as yet unidentified mechanism.  相似文献   

17.
The naphthalene-catabolic (nah) genes on the incompatibility group P-9 (IncP-9) self-transmissible plasmid NAH7 from Pseudomonas putida G7 are some of the most extensively characterized genetic determinants for bacterial aerobic catabolism of aromatic hydrocarbons. In contrast to the detailed studies of its catabolic cascade and enzymatic functions, the biological characteristics of plasmid NAH7 have remained unclear. Our sequence determination in this study together with the previously deposited sequences revealed the entire structure of NAH7 (82,232 bp). Comparison of NAH7 with two other completely sequenced IncP-9 catabolic plasmids, pDTG1 and pWW0, revealed that the three plasmids share very high nucleotide similarities in a 39-kb region encoding the basic plasmid functions (the IncP-9 backbone). The backbone of NAH7 is phylogenetically more related to that of pDTG1 than that of pWW0. These three plasmids carry their catabolic gene clusters at different positions on the IncP-9 backbone. All of the NAH7-specified nah genes are located on a class II transposon, Tn4655. Our analysis of the Tn4655-encoded site-specific recombination system revealed that (i) a novel tyrosine recombinase, TnpI, catalyzed both the intra- and intermolecular recombination between two copies of the attI site, (ii) the functional attI site was located within a 119-bp segment, and (iii) the site-specific strand exchange occurred within a 30-bp segment in the 41-bp CORE site. Our results and the sequence data of other naphthalene-catabolic plasmids, pDTG1 and pND6-1, suggest a potential role of the TnpI-attI recombination system in the establishment of these catabolic plasmids.  相似文献   

18.
The DNA rudivirus SIRV1 of the hyperthermophilic archaeon Sulfolobus shows exceptional properties. Viral isolates invariably contain a population of variants with different but closely related genomes. Upon propagation in a given host strain, one or more genomes dominate in the viral population. However, upon passage into a new host strain the viral population undergoes changes and other dominant variants are selected. Sequencing and analysis of the variant genomes revealed that major differences occur in gene order, gene size and gene content at localized genomic sites. A previously unknown mechanism of genomic rearrangement involving putative 12 bp archaeal introns appears to facilitate alteration of the variant genomes. Inter-genomic recombination between the different variants also occurs. The variant genomes exhibit signature tetranucleotide sequences near their putative sites for replication initiation.  相似文献   

19.
The conjugative transposon Tn916 encodes a protein called INT(Tn916) which, based on DNA sequence comparisons, is a member of the integrase family of site-specific recombinases. Integrase proteins such as INT(lambda), FLP, and XERC/D that promote site-specific recombination use characteristic, conserved amino acid residues to catalyze the cleavage and ligation of DNA substrates during recombination. The reaction proceeds by a two-step transesterification reaction requiring the formation of a covalent protein-DNA intermediate. Different requirements for homology between recombining DNA sites during integrase-mediated site-specific recombination and Tn916 transposition suggest that INT(Tn916) may use a reaction mechanism different from that used by other integrase recombinases. We show that purified INT(Tn916) mediates specific cleavage of duplex DNA substrates containing the Tn916 transposon ends and adjacent bacterial sequences. Staggered cleavages occur at both ends of the transposon, resulting in 5' hydroxyl protruding ends containing coupling sequences. These are sequences that are transferred with the transposon from donor to recipient during conjugative transposition. The nature of the cleavage products suggests that a covalent protein-DNA linkage occurs via a residue of INT(Tn916) and the 3'-phosphate group of the DNA. INT(Tn916) alone is capable of executing the strand cleavage step required for recombination during Tn916 transposition, and this reaction probably occurs by a mechanism similar to that of other integrase family site-specific recombinases.  相似文献   

20.
In this study, we have used multiple strategies to characterize the mechanisms of the type I and type II RNA cleavage activities harbored by the Flp (pronounced here as "flip") site-specific DNA recombinase (Flp-RNase I and II, respectively). Reactions using half-sites pre-bound by step-arrest mutants of Flp agree with a "shared active site" being responsible for the type I reaction (as is the case with normal DNA recombination). In a "pre-cleaved" type I substrate containing a 3'-phosphotyrosyl bond, the Flp-RNase I activity can be elicited by either wild type Flp or by Flp(Y343F). Kinetic analyses of the type I reaction are consistent with the above observations and support the notion that the DNA recombinase and type I RNase active sites are identical. The type II RNase activity is expressed by Flp(Y343F) in a half-site substrate and is unaffected by the catalytic constitution of a Flp monomer present on a partner half-site. Reaction conditions that proscribe the assembly of a DNA bound Flp dimer have no effect on Flp-RNase II. These biochemical results, together with kinetic data, are consistent with the reaction being performed from a "non-shared active site" contained within a single Flp monomer. The Flp-related recombinase Cre, which utilizes a non-shared recombination active site, exhibits the type I RNA cleavage reaction. So far, we have failed to detect the type II RNase activity in Cre. Despite their differences in active site assembly, Cre functionally mimics Flp in being able to provide two functional active sites from a trimer of Cre bound to a three-armed (Y-shaped) substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号