首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kurz CL  Tan MW 《Aging cell》2004,3(4):185-193
The free-living soil nematode Caenorhabditis elegans is a versatile model for the study of the genetic regulation of aging and of host-pathogen interactions. Many genes affecting multiple processes, such as neuroendocrine signalling, nutritional sensing and mitochondrial functions, have been shown to play important roles in determining the lifespan of C. elegans. The DAF-2-mediated insulin signalling pathway is the major pathway that regulates aging in this nematode and this role appears universal; neuroendrocrine signalling also affects aging in Drosophila and mice. Recent studies have shown that the innate immune function in C. elegans is modulated by signalling from the TGF-beta-like, the p38 MAPK and the DAF-2 insulin pathways. The requirement for the DAF-2 pathway in modulating aging and immunity suggests that these processes may be linked at the molecular level. It is well known that as humans age, immunosenescence occurs in which there is a general degradation of immune efficiency. However, the molecular mechanisms involved in this process remain unclear. In this review, we discuss the molecular mechanisms that modulate aging and immune response and attempt to suggest molecular links between these two processes.  相似文献   

2.
Aging inevitably leads to reduced immune function, leaving the elderly more susceptible to infections, less able to respond to pathogen challenges, and less responsive to preventative vaccinations. No cell type is exempt from the ravages of age, and extensive studies have found age‐related alterations in the frequencies and functions of both stem and progenitor cells, as well as effector cells of both the innate and adaptive immune systems. The intrinsic functional reduction in immune competence is also associated with low‐grade chronic inflammation, termed “inflamm‐aging,” which further perpetuates immune dysfunction. While many of these age‐related cellular changes are well characterized, understanding the molecular changes that underpin the functional decline has proven more difficult. Changes in chromatin are increasingly appreciated as a causative mechanism of cellular and organismal aging across species. These changes include increased genomic instability through loss of heterochromatin and increased DNA damage, telomere attrition, and epigenetic alterations. In this review, we discuss the connections between chromatin, immunocompetence, and the loss of function associated with mammalian immune aging. Through understanding the molecular events which underpin the phenotypic changes observed in the aged immune system, it is hoped that the aged immune system can be restored to provide youthful immunity once more.  相似文献   

3.
Susceptibility for giant cell arteritis increases with chronological age, in parallel with age-related restructuring of the immune system and age-induced remodeling of the vascular wall. Immunosenescence results in shrinkage of the naïve T-cell pool, contraction of T-cell diversity, and impairment of innate immunity. Aging of immunocompetent cells forces the host to take alternative routes for protective immunity and confers risk for pathogenic immunity that causes chronic inflammatory tissue damage. Dwindling immunocompetence is particularly relevant as the aging host is forced to cope with an ever growing infectious load. Immunosenescence coincides with vascular aging during which the arterial wall undergoes dramatic structural changes and medium and large arteries lose their pliability and elasticity. On the molecular level, elastic fibers deteriorate and matrix proteins accumulate biochemical modifications. Thus, the aging process impacts the two major biologic systems that liaise to promote giant cell arteritis; the immune system and the vessel wall niche.  相似文献   

4.
Mechnikov’s hypothesis that the key to prolongation of life lies in the introduction of useful microflora to the gut was not proved. Any microflora needs nutrition and perceives the human body only as a nutrient substrate. Destruction of the basement membranes, that delimit the epithelium contacting with aggressive microbiological environment from the deeper parts of the body, can lead to chronic inflammatory diseases and aging of the skin as a consequence of invasion of microorganisms. At the ultrastructural level this has been shown by the example of prostatitis and skin aging changes. Coupled with the penetration of germs, a flux of immune cells may cause autoimmune reactions due to abrupt changes in the molecular design during intermembrane transport. Thus, the physiological process of macroorganism aging can be viewed as a consequence of its microbiological destruction.  相似文献   

5.
Complex adaptations including changes in cellular redox status, the production of high levels of pro-inflammatory cytokines and alterations in immunity occur as the result of aging of the immune system (immunosenescence). These events are thought to underlie the progression of chronic degenerative diseases of aging, such as atherosclerosis, Type 2 diabetes and Alzheimer's disease. It is envisaged that identifying early biomarkers of immune aging would aid in identifying individuals at risk of age-related disease and would allow the discovery of novel intervention strategies. Proteomics has emerged as a rapidly expanding and innovative field, investigating protein expression, interaction and function at a global level. Several proteomic strategies, including use of mass spectrometry and non-mass spectrometry-based detection systems (including secondary antibody labeling with fluorescent tags) may be particularly advantageous in identifying biomarkers of immune health. Application of these approaches may identify factors that both contribute to (and define) age-dependent deregulation of the immune system.  相似文献   

6.
Complex adaptations including changes in cellular redox status, the production of high levels of pro-inflammatory cytokines and alterations in immunity occur as the result of aging of the immune system (immunosenescence). These events are thought to underlie the progression of chronic degenerative diseases of aging, such as atherosclerosis, Type 2 diabetes and Alzheimer’s disease. It is envisaged that identifying early biomarkers of immune aging would aid in identifying individuals at risk of age-related disease and would allow the discovery of novel intervention strategies. Proteomics has emerged as a rapidly expanding and innovative field, investigating protein expression, interaction and function at a global level. Several proteomic strategies, including use of mass spectrometry and non-mass spectrometry-based detection systems (including secondary antibody labeling with fluorescent tags) may be particularly advantageous in identifying biomarkers of immune health. Application of these approaches may identify factors that both contribute to (and define) age-dependent deregulation of the immune system.  相似文献   

7.
Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time‐dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age‐related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well‐described molecular and cellular hallmarks and discuss physiological changes of aging at the organ‐system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging.  相似文献   

8.
9.
The decline in immune function with aging, known as immunosenescence, has been implicated in evolutionarily diverse species, but the underlying molecular mechanisms are not understood. During aging in Caenorhabditis elegans, intestinal tissue deterioration and the increased intestinal proliferation of bacteria are observed, but how innate immunity changes during C. elegans aging has not been defined. Here we show that C. elegans exhibits increased susceptibility to bacterial infection with age, and we establish that aging is associated with a decline in the activity of the conserved PMK-1 p38 mitogen-activated protein kinase pathway, which regulates innate immunity in C. elegans. Our data define the phenomenon of innate immunosenescence in C. elegans in terms of the age-dependent dynamics of the PMK-1 innate immune signaling pathway, and they suggest that a cycle of intestinal tissue aging, immunosenescence, and bacterial proliferation leads to death in aging C. elegans.  相似文献   

10.
11.
12.
Aging results in various deleterious changes in the human body that may lead to loss of function and the manifestation of chronic diseases. While diseases can generally be reliably diagnosed, the aging process itself requires more sophisticated approaches to evaluate its progression. Numerous attempts have been made to establish biomarkers to quantify human aging at the cellular, tissue, and organismal level. Here, an up‐to‐date overview of biomarkers related to human aging with an emphasis on biomarkers that take into account different mechanisms of aging between individuals is provided. Classical discrete molecular and non‐molecular biomarkers handpicked by researches on the base of their strong correlation with age, as well as emerging omics‐based biomarkers, are discussed and potential future directions and developments in the field of aging assessment are outlined.  相似文献   

13.
Aging is a complex process involving morphologic and biochemical changes in single cells and in the whole organism. One of the most popular explanations of how aging occurs at the molecular level is the oxidative stress hypothesis. Oxidative stress leads in many cases to an age-dependent increase in the cellular level of oxidatively modified macromolecules including DNA, and it is this increase which has been linked to various pathological conditions, such as aging, carcinogenesis, neurodegenerative and cardiovascular diseases. It is, however, possible that a number of short-comings associated with gaps in our knowledge may be responsible for the failure to produce definite results when applied to understanding the role of DNA damage in aging and age-related diseases.  相似文献   

14.
15.
Human aging is associated with progressive decline in immune functions, increased frequency of infections. Among immune functions, a decline in T cell functions during aging predominates. In this review, we will discuss the molecular signaling in two major pathways of apoptosis, namely death receptor pathway and mitochondrial pathway, and their alterations in both T and B lymphocytes in human aging with a special emphasis on naïve and different memory subsets of CD8+ T cells. We will also discuss a possible role of lymphocyte apoptosis in immune senescence.  相似文献   

16.
A model has been described for studying the effect of aging on the cellular events involved in the induction, maintenance, and termination of a central tolerant state representative of the natural tolerant state to self. This model may permit an approach to the examination of the immune status of subpopulations of T and B cells to self antigens during aging. Prelminary data with NBZ mice, which show signs of accelerated autoimmune disease, suggest a possible defect detected by changes in polyclonal activation of B cells. This defect appears to be at the B cell level and not to involve suppressor T cells.  相似文献   

17.
One of the most dramatic changes associated with aging involves immunity. In aging mammals, immune function declines and chronic inflammation develops. The biological significance of this phenomenon and its relationship with aging is a priority for aging research. Drosophila is an invaluable tool in understanding the effects of aging on the immune response. Similar to the state of chronic inflammation in mammals, Drosophila exhibits a drastic up-regulation of immunity-related genes with age. However, it remains unclear whether immune function declines with age as seen in mammals. We evaluated the impact of aging on Drosophila immune function by examining across age the ability to eliminate and survive different doses of bacterial invaders. Our findings show that aging reduces the capacity to survive a bacterial infection. In contrast, we found no evidence that aging affects the ability to eliminate bacteria indicating that the mechanisms underlying immune senescence are not involved in eliminating bacteria or preventing their proliferation.  相似文献   

18.
机体衰老的本质是细胞衰老不断累积的过程。免疫系统的衰老既是机体衰老的必然结果,也是导致机体衰老的重要原因。免疫系统作为衰老变化的主要系统之一受到越来越多的学者重视。本文将从适应性免疫系统的T、B细胞及固有免疫系统的自然杀伤(NK)细胞、巨噬细胞、中性粒细胞、树突状细胞(DC)和骨髓源性抑制细胞等免疫细胞的亚群、衰老指标和功能等方面在衰老过程中的改变进行总结,进一步明确免疫系统衰老在机体衰老过程中扮演的重要角色。  相似文献   

19.
Aging and age‐related pathology is a result of a still incompletely understood intricate web of molecular and cellular processes. We present a C57BL/6J female mice in vivo aging study of five organs (liver, kidney, spleen, lung, and brain), in which we compare genome‐wide gene expression profiles during chronological aging with pathological changes throughout the entire murine life span (13, 26, 52, 78, 104, and 130 weeks). Relating gene expression changes to chronological aging revealed many differentially expressed genes (DEGs), and altered gene sets (AGSs) were found in most organs, indicative of intraorgan generic aging processes. However, only ≤ 1% of these DEGs are found in all organs. For each organ, at least one of 18 tested pathological parameters showed a good age‐predictive value, albeit with much inter‐ and intraindividual (organ) variation. Relating gene expression changes to pathology‐related aging revealed correlated genes and gene sets, which made it possible to characterize the difference between biological and chronological aging. In liver, kidney, and brain, a limited number of overlapping pathology‐related AGSs were found. Immune responses appeared to be common, yet the changes were specific in most organs. Furthermore, changes were observed in energy homeostasis, reactive oxygen species, cell cycle, cell motility, and DNA damage. Comparison of chronological and pathology‐related AGSs revealed substantial overlap and interesting differences. For example, the presence of immune processes in liver pathology‐related AGSs that were not detected in chronological aging. The many cellular processes that are only found employing aging‐related pathology could provide important new insights into the progress of aging.  相似文献   

20.
Many different morphological and physiological changes occur during the yeast replicative lifespan. It has been proposed that change is a cause rather than an effect of aging. It is difficult to ascribe causality to processes that manifest themselves at the level of the entire organism, because of their global nature. Although causal connections can be established for processes that occur at the molecular level, their exact contributions are obscured, because they are immersed in a highly interactive network of processes. A top-down approach that can isolate crucial features of aging processes for further study may be a productive avenue. We have mathematically depicted the complicated and random changes that occur in cellular spatial organization during the lifespan of individual yeast cells. We call them budding profiles. This has allowed us to demonstrate that budding profiles are a highly individual characteristic, and that they are correlated with an individual cell's longevity. Additional information can be extracted from our model, indicating that random budding is associated with longevity. This expectation was confirmed, providing new avenues for exploring causal factors in yeast aging. The methodology described here can be readily applied to other aspects of aging in yeast and in higher organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号