首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K H Andersson 《Cytobios》1978,21(83-84):185-218
Cultures of Tetrahymena pyriformis were grown with and without the addition of Fe and with no aeration. The same cultures were used both for determinations of the cellular Fe and Ca concentrations and the exchange of Ca (reported earlier), and for the ultrastructural study. In all cultures there was an increase in rounded, tubuli-deficient mitochondria at the transition to the prestationary growth phase. In the non-aerated culture (high cellular Fe content) these changes were less marked. In the Fe-deficient culture, however, these mitochondrial changes were seen as early as the late exponential growth phase, and tubuli-degeneration then increased during the prestationary growth phase. In this culture an irregular infolding of the outer mitochondrial membranes occurred. These changes are discussed in correlation with cytochromes, Fe-dependent desaturation of fatty acids, and high Ca concentration (non-aerated cells). During the prestationary growth phase of the non-aerated culture there was a marked increase in the amount of mitochondrial tubuli. In the organelles identified as peroxisomes there was, in all the cultures, an increased granular density of the matrix at the transition to the prestationary growth phase (in the Fe-deficient cells this occurred in the late exponential growth phase). This was correlated with an increased peroxisomal activity. The Fe-deficient culture has cells with very irregularly formed peroxisomes. This organelle was in all the cell-material very sensitive to the method of fixation. In the Fe-deficient late exponential cells there are long, bifacial pieces of RER (one side rough and the other smooth) which later undergo degradation. Many lipid droplets were seen at the ends of RER. Structures which in the literature have been called 'ergoplasm-like stacks of flattened rough cisternae' were found in the non-aerated exponential cells. They were absent from prestationary cells. In all the cultures there was an increased aggregation of the ribosomes in the cytoplasm during the prestationary growth phase. This was correlated with the accumulation of Ca in this cell fraction. An explanation is suggested regarding the earlier reported variations in the exchange of Ca, found in all the types of cultures at the transition to the prestationary growth phase.  相似文献   

2.
Summary Halobacterium cutirubrum was successfully cultivated under aerobic and microaerobic conditions. The early stationary phase of growth was obtained at 2.2 days and 45–55 days for aerated and non-aerated cultures, respectively. The dry cell yields were 0.7–1.2 gm/l in all preparations grown to early stationary growth phase. The cellular ratio of squalene to dihydro- and tetra-hydrosqualene decreased proportionately with decreased aeration rates.  相似文献   

3.
We have explored the hypothesis that hypertrophy of vascular smooth muscle cells may be regulated, in part, by growth inhibitory factors that alter the pattern of the growth response to serum mitogens by characterizing the effects of the potent growth inhibitor, transforming growth factor-beta (TGF-beta), on both hyperplastic and hypertrophic growth of cultured rat aortic smooth muscle cells. TGF-beta inhibited serum-induced proliferation of rat aortic smooth muscle cells (ED50 = 2 pM); this is consistent with previously reported observations in bovine aortic smooth muscle cells (Assoian et al. 1982. J. Biol. Chem. 258:7155-7160). Growth inhibition was due in part to a greater than twofold increase in the cell cycle transit time in cells that continued to proliferate in the presence of TGF-beta. TGF-beta concurrently induced cellular hypertrophy as assessed by flow cytometric analysis of cellular protein content (47% increase) and forward angle light scatter (32-50% increase), an index of cell size. In addition to being time and concentration dependent, this hypertrophy was reversible. Simultaneous flow cytometric evaluation of forward angle light scatter and cellular DNA content demonstrated that TGF-beta-induced hypertrophy was not dependent on withdrawal of cells from the cell cycle nor was it dependent on growth arrest of cells at a particular point in the cell cycle in that both cycling cells in the G2 phase of the cell cycle and those in G1 were hypertrophied with respect to the corresponding cells in vehicle-treated controls. Chronic treatment with TGF-beta (100 pM, 9 d) was associated with accumulation of cells in the G2 phase of the cell cycle in the virtual absence of cells in S phase, whereas subsequent removal of TGF-beta from these cultures was associated with the appearance of a significant fraction of cycling cells with greater than 4c DNA content, consistent with development of tetraploidy. Results of these studies support a role for TGF-beta in the control of smooth muscle cell growth and suggest that at least one mechanism whereby hypertrophy and hyperploidy may occur in this, as well as other cell types, is by alterations in the response to serum mitogens by potent growth inhibitors such as TGF-beta.  相似文献   

4.
The photosynthetic bacterium Rhodobacter capsulatus has been shown to regulate its nitrogenase by covalent modification via the reversible ADP-ribosylation of Fe protein in response to darkness or the addition of external NH4+. Here we demonstrate the presence of ADP-ribosylated Fe protein under a variety of steady-state growth conditions. We examined the modification of Fe protein and nitrogenase activity under three different growth conditions that establish different levels of cellular nitrogen: batch growth with limiting NH4+, where the nitrogen status is externally controlled; batch growth on relatively poor nitrogen sources, where the nitrogen status is internally controlled by assimilatory processes; and continuous culture. When cultures were grown to stationary phase with different limiting concentrations of NH4+, the ADP-ribosylation state of Fe protein was found to correlate with cellular nitrogen status. Additionally, actively growing cultures (grown with N2 or glutamate), which had an intermediate cellular nitrogen status, contained a portion of their Fe protein in the modified state. The correlation between cellular nitrogen status and ADP-ribosylation state was corroborated with continuous cultures grown under various degrees of nitrogen limitation. These results show that in R. capsulatus the modification system that ADP-ribosylates nitrogenase in the short term in response to abrupt changes in the environment is also capable of modifying nitrogenase in accordance with long-term cellular conditions.  相似文献   

5.
High levels of aluminium in the soil solution of forest soils cause stress to forest trees. Within the soil profile, pH and aluminium concentration in the soil solution vary considerably with soil depth. pH strongly influences the speciation of A1 in solution, and is a factor when considering toxicity of A1 to roots. Norway spruce ( Picea abies [L.] Karst.) seedlings were grown for 7 weeks in nutrient solutions at pH 3.2, 4.0 or 5.0 containing 0, 100 or 400 µ M A1. At the end of this period, seedling growth, the cation exchange capacity of the roots and the amount of exchangeable Ca and Mg in roots were determined. A1 concentrations in whole roots, root segments, and in needles were measured. Using X‐ray microanalysis, the concentrations of Al, Ca, Mg and P were determined in cortical cell walls. We wanted to test the hypotheses that (1) the amount of Al bound to cation exchange sites can be used as a marker for Al toxicity and (2) the Mg concentration of needles is controlled by the amount of Mg bound to cation exchange sites. Low pH reduced the inhibition of Al on root growth and shoot length. Both low pH and Al lowered the concentration of Ca and Mg in needles. Al concentrations in the roots decreased as the pH decreased. In the roots, Al displaced Mg and Ca from binding sites at the root cortical cell walls. A comparison of the effects of Al at the different pH values on root growth and Mg concentration in the needles, suggests that, at pH 5.0, an Al fraction in the apoplast inhibits root growth, but does not affect Mg uptake. This fraction of Al is not available for transport to the shoots. In contrast, Mg uptake is strongly affected by Al at pH 3.2, although only very low levels of Al were detected in the roots. Thus, Al accumulation in the apoplast is a positive marker for Al effects on root growth, but not Mg uptake. The Mg concentration of needles is not controlled by the amount of Mg bound to cation exchange sites.  相似文献   

6.
To improve the cell protocol forCymnema sylvestre, we investigated the influence of initial sucrose concentration, inoculum density, and optimal concentrations of auxins (IBA and NAA) in flask cultures, as well as the role of aeration volume in bioreactor cultures. Cell growth was enhanced 9-fold when the medium was supplemented with 3% sucrose versus a sucrose-free environment. Increasing the inoculum density to 60 g (wet weight) L-1, but no further, greatly improved the growth of these cultures. All concentrations of IBA proved inhibitory while supplementation with 5 nig L-1 NAA was associated with significantly higher dry-cell weights. In our bioreactor cultures, a step-wise increase in aeration volume from 0.05 to 0.40 wm was optimal for cell growth. Although biomass (i.e., fresh weight) accumulated in the bioreactor up until Day 20, the dry-cell weights increased 10-fold, but only through Day 15. The internal dynamics of our culture media indicated that sucrose was preferentially utilized and that its concentration steeply decreased at the log phase. In contrast, both glucose and fructose supplies were exhausted only at the beginning of the declining phase. Our findings suggest that a 15-d culture period is optimal for G.sylvestre cell growth in a bioreactor.  相似文献   

7.
The changes in growth kinetics in aerobic batch cultures of Klebsiella pneumoniae were followed by measurements of extracellular metabolites, rates of gas exchange, dissolved oxygen tension, pH, and carbon balance at all stages of growth. When the initial growth-limiting glucose concentration in media without pH control was increased from 1.0 g carbon L(-1) to 2.2 g carbon L(-1), the number of different, mainly acidic, extracellular metabolites of glucose at the end of exponential growth increased, while the proportion of acetate decreased. During the postexponential growth phase, the extracellular metabolites were oxidized, resulting in an increasing complexity of changes in pH, gas exchange, and dissolved oxygen tension with increasing initial substrate concentration. All these parameters showed concomitant stepwise changes. This pattern was independent of the dissolved oxygen tension in the range 30-200 muM. When pH was kept constant, the number, slope, and relative magnitude of the steps in gas exchange and dissolved oxygen tension were pH-dependent, being most complex at low pH. Detailed carbon balances showed that 20% of the initial glucose was converted into extracellular metabolites at the end of exponential growth at neutral pH. In the postexponential phase, pyruvate (2%) was reoxidized first followed by acetate (13%). The observed molar growth yield coefficient (Y(ATP)) was 8.4 if the transitory occurrence of pyruvate and acetate was accounted for, and 6.4 if it was neglected. The corrected observed molar growth yield coefficient (Y'(ATP)) was 9.4 and compared well with the true molar growth yield coefficient (Y(Max) (ATP)), which was found to be 11.0. Specific in situ respiration rates of the exponential growth phase of cultures grown at different controlled pH values compared well with in situ values for energy-limited chemostat grown cells at the same growth rates, suggesting that growth in the batch culture was energy-limited throughout the exponential growth phase. This view was supported by low levels of intracellular glycogen and exopolysaccharides of all cultures, by the value of Y'(ATP) of 9.4, and by a constant specific production rate of the extracellular metabolites throughout exponential growth. It was concluded that even under strictly aerobic conditions, control of pH is as important as control of dissolved oxygen tension during growth of enterobacteriaceae in batch cultures.  相似文献   

8.
In this study, we demonstrated that the period of logarithmic growth for Thiobacillus ferrooxidans could be extended when optimal conditions for cell growth were maintained using potential controlled electrochemical cultivation with sufficient aeration. The optimal pH and Fe(II) concentration for the electrolytic cultivation were determined to be 2.0 and 150 mM, respectively. When the potential was set to 0.0V vs Ag/AgCl, the Pt electrode reduced Fe(III) to Fe(II) with an efficiency of 95%. A porous glass microbubble generator was used to maintain adequate levels of dissolved oxygen, which was the electron acceptor for T. ferrooxidans when the cell density in the medium was high. Under these conditions, cells at an initial density of 10(7) cells/mL grew logarithmically for 4days until the cell density was 4 x 10(9) cells/mL. This corresponded to a period of logarithmic growth that was 3 times longer than was observed in batch cultures without electrolysis. In addition, the final cell density reached 10(10) cells/mL after 6 days of electrochemical cultivation, which was a 50-fold increase over conventional batch culture. Under conditions of increasing cell density, potentiostatic electrolysis made it possible to remove Fe(III), which causes product inhibition, at an increasing rate and to correspondingly increase the production rate of Fe(II), which is the electron donor for T. ferrooxidans. Thus, our cultivation system provides a sufficient supply of electron donor and acceptor for T. ferrooxidans, thereby elongating the period of logarithmic growth and producing very high cell densities.  相似文献   

9.
For cultures of moderately thermophilic chemolithotrophic bacteria Sulfobacillus sibiricus N1 and SSO, S. thermosulfidooxidans subsp. asporogenes 41, and the thermotolerant strain S. thermotolerans Kr1 grown under forced aeration and in a high medium layer without aeration, growth characteristics, substrate consumption, and exometabolite formation were compared. Sulfobacilli grown under oxygen limitation exhibited greater generation time, longer growth period, cell yield decreased by from 40 to 85% (depending on the strain), suppressed cell respiration ( demonstrated for S. sibiricus N1 ), accumulation of exometabolites (acetate and propionate) in the medium, and emergence of resting forms. For strains N1, SSO, and Kr1, oscillations of Fe(II) and Fe(III) content in the medium were revealed. For S. sibiricus N1 and S. thermotolerans Kr1, grown under hypoxia (0.07% O2 in the gas phase), coupling of substrate oxidation with Fe(III) reduction was revealed, as well as utilization of Fe(III) as an electron acceptor alternative to oxygen. The role of labile energy and constructive metabolism for survival of sulfobacilli under diverse conditions is discussed.  相似文献   

10.
Azotobacter chroococcum (ATCC 7493) was grown in continuous culture with intense vortex aeration (stirring rate 1750 rpm) with up to 50% O2 in the gas phase. Under these conditions the dissolved O2 generally remained at zero while the cell growth rose to about twice the normally accepted value. The meaning of the term "O2-limitation" in N2-fixing A. chroococcum cultures is critically examined.  相似文献   

11.
Growth and spirolide production of the toxic dinoflagellate Alexandrium ostenfeldii (Danish strain CCMP1773) were studied in batch culture and a photobioreactor (continuous cultures). First, batch cultures were grown in 450 mL flasks without aeration and under varying conditions of temperature (16 and 22 °C) and culture medium (L1, f/2 and L1 with addition of soil extract). Second, cultures were grown at 16 °C in 8 L aerated flat-bottomed vessels using L1 with soil extract as culture medium. Finally, continuous cultures in a photobioreactor were conducted at 18 °C in L1 with soil extract; pH was maintained at 8.5 and continuous stirring was applied.This study showed that A. ostenfeldii growth was significantly affected by temperature. At the end of the exponential phase, maximum cell concentration and cell diameter were significantly higher at 16 °C than at 22 °C. In batch culture, maximum spirolide quota per cell (approx. 5 pg SPX 13-desMeC eq cell−1) was detected during lag phase for all conditions used. Spirolide quota per cell was negatively and significantly correlated to cell concentration according to the following equation: y = 4013.9x−0.858. Temperature and culture medium affected the spirolide profile which was characterized by the dominance of 13,19-didesMeC (29–46%), followed by SPX-D (21–28%), 13-desMeC (21–23%), and 13-desMeD (17–21%).Stable growth of A. ostenfeldii was maintained in a photobioreactor over two months, with maximum cell concentration of 7 × 104 cells mL−1. As in batch culture, maximum spirolide cell quota was found in lag phase and then decreased significantly throughout the exponential phase. Spirolide cell quota was negatively and significantly correlated to cell concentration according to the equation: y = 12,858x−0.8986. In photobioreactor, spirolide profile was characterized by higher proportion of 13,19-didesMeC (60–87%) and lower proportions of SPX-D (3–12%) and 13-desMeD (1.6–10%) as compared to batch culture.  相似文献   

12.
The growth of Staphylococcus aureus 209P becomes unusually sensitive to a high-NaCl concentration by decreasing the Ca2+ concentration in growth media, and cells either autolyze or transform into protoplast-like forms when grown standing in high-NaCl and low-Ca2+ concentration media below 37 C (Ochiai, T., Microbiol. Immunol. 43 (7): 705-709, 1999). To assess the role of Ca2+ in the salt tolerance of this organism, cells grown in the presence of different concentrations of Ca2+ were treated with boiling SDS, and their susceptibilities to crude autolysin (3 M LiCl extract of S. aureus 209P cells) were evaluated by turbidimetric assay and zymographic analysis. Susceptibilities of SDS-treated cells (SDS-cells) to crude autolysin were significantly influenced by Ca2+ concentration in the culture, and SDS-cells prepared from cultures grown in high-NaCl and high-Ca2+ concentration media exhibited marked resistance to crude autolysin when the assay system contained a high concentration of NaCl. On the contrary, SDS-cells prepared from cultures grown in high-NaCl and low-Ca2+ concentration media were rather susceptible to crude autolysin under the same assay conditions. A zymographic analysis revealed that the constitution of cell-associated autolysins was not influenced by the concentration of exogenous Ca2+. These results suggested that at least part of the mechanism of salt-induced autolysis in S. aureus 209P might be related to the synthesis of an autolysin susceptible cell wall.  相似文献   

13.
We have examined the ability of epidermal growth factor (EGF) to regulate prostacyclin production by cultured A10 smooth muscle cells. EGF by itself had no effect on prostacyclin production, but it augmented the response to arg8-vasopressin. An AGF stimulation of prostacyclin production was also observed in the presence of the calcium ionophore A23187; it therefore seemed likely that the key event required for EGF to stimulate prostacyclin production might be an increase in the available cellular Ca2+. Studies with 45Ca2+ showed that vasopressin both mobilised Ca2+ from intracellular stores and increased the influx of extracellular Ca2+ into A10 cells. The increase in prostacyclin production caused by vasopressin and the augmentation by EGF were both abolished by TMB-8, an antagonist of Ca2+ mobilisation, by EGTA, a chelator of Ca2+ ions, or by incubating cultures in the absence of added Ca2+. These results were consistent with a central role for Ca2+ in the responses and showed that both intracellular and extracellular sources of Ca2+ were important for the triggering of prostacyclin production. The increases in prostacyclin production were only marginally affected by nifedipine, and no responses were seen (either in the absence or presence of EGF) when KCl was used to depolarise the cell membrane. These data indicated that uptake of Ca2+ ions via voltage-dependent channels was unlikely to be a major factor in the stimulation of prostanoid production. We conclude that the ability of EGF to stimulate prostacyclin production in A10 smooth muscle cells depends upon a concurrent stimulus that will increase available intracellular Ca2+ levels.  相似文献   

14.
The cryotolerance in frozen doughs and in water suspensions of bakers' yeast (Saccharomyces cerevisiae) previously grown under various industrial conditions was evaluated on a laboratory scale. Fed-batch cultures were very superior to batch cultures, and strong aeration enhanced cryoresistance in both cases for freezing rates of 1 to 56 degrees C min. Loss of cell viability in frozen dough or water was related to the duration of the dissolved-oxygen deficit during fed-batch growth. Strongly aerobic fed-batch cultures grown at a reduced average specific rate (mu = 0.088 h compared with 0.117 h) also showed greater trehalose synthesis and improved frozen-dough stability. Insufficient aeration (dissolved-oxygen deficit) and lower growth temperature (20 degrees C instead of 30 degrees C) decreased both fed-batch-grown yeast cryoresistance and trehalose content. Although trehalose had a cryoprotective effect in S. cerevisiae, its effect was neutralized by even a momentary lack of excess dissolved oxygen in the fed-batch growth medium.  相似文献   

15.
The growth and toxin content of the dinoflagellate Alexandrium tamarense ATHK was markedly affected by culture methods. In early growth phase at lower cell density static or mild agitation methods were beneficial to growth, but continuous agitation or aeration, to some extent, had an adverse effect on cell growth. Static culture in 2 L Erlenmeyer flasks had the highest growth rate (0.38 d−1) but smaller cell size compared with other culture conditions. Cells grown under aerated conditions possessed low nitrogen and phosphorus cell yields, namely high N and P cell-quota. At day 18, cells grown in continuous agitated and 1 h aerated culture entered the late stationary phase and their cellular toxin contents were higher (0.67 and 0.54 pg cell−1) compared with cells grown by other culture methods (0.27–0.49 pg cell−1). The highest cell density and cellular toxin content were 17190 cells mL−1 and 1.26 pg cell−1 respectively in an airlift photobioreactor with two-step culture. The results indicate that A. tamarense could be grown successfully in airlift photobioreactor by a two-step culture method, which involved cultivating the cells statically for 4 days and then aerating the medium. This provides an efficient way to enhance cell and toxin yield of A. tamarense.  相似文献   

16.
The fraction of cell thiol proteins in the oxidized disulfide form were quantified during mitogen-induced HaCaT keratinocyte growth initiation. Oxidized thioredoxin increased from 11 +/- 1.2% in resting cells to 80 and 61% 2 min after addition of bradykinin or EGF. Thioredoxin oxidation was transient returning toward normal values by 20 min. The disulfide forms of other cellular proteins rose in parallel with thioredoxin oxidation. The oxidation of thioredoxin depended on a rise in cytosolic calcium. It was prevented by preloading cells with BAPTA, a Ca(2+) chelator and induced by addition of Ca(2+)-ionophore A23187 or of thapsigargin. In cell extracts, thioredoxin reductase was inhibited by micromolar calcium. The rise in cytosolic Ca(2+) led to a concomitant burst of H(2)O(2) formation. The oxidizing intracellular milieu suggests that redox regulation actively participates in the growth initiation cascade. The role of peroxiredoxins and ASK 1 cascade activation are discussed in this context.  相似文献   

17.
PER.C6 cells were cultivated for propagation of a replication-defective adenovirus vector in serum-free suspension bioreactors. Cellular metabolism during cell growth and adenovirus propagation was fully characterized using on-line and off-line methods. The energy metabolism was found to accelerate transiently after adenovirus infection with increases in glucose and oxygen consumption rates. Similar to other mammalian cells, glucose utilization was highly inefficient and a high lactate:glucose yield was observed, both before and after virus infection. A higher consumption of most of the essential amino acids was observed transiently after the infection, likely due to increased protein synthesis requirements for virus propagation. To improve virus propagation, a medium exchange strategy was implemented to increase PER.C6 cell concentration for infection. During cell growth, a 50% increase in glucose consumption and lactate production rates was observed after initiation of the medium exchange in comparison to the batch phase. This decrease in medium capacity only affected the central carbon metabolism and no increase in amino acid consumption was observed. In addition, even though cell concentrations of up to 10 x 10(6) cells/mL were reproducibly obtained by medium exchange, infections at cell concentrations higher than 1 x 10(6) cells/mL did not proportionally improve volumetric adenovirus productivities. No measured nutrient limitation was observed at those high cell concentrations, indicating that adenovirus cell-specific productivity at higher cell concentrations is highly dependent on cell physiology. These results provide a better understanding of PER.C6 cellular metabolism and a basis for intensifying PER.C6 growth and adenovirus propagation.  相似文献   

18.
Somatic embryogenesis is the most important in vitro culture system for conifer propagation. However, Pinus taeda has been considered recalcitrant to somatic embryogenesis in commercial scale-up. The study of biochemical and physiological aspects of cell growth could lead to a better understanding of somatic embryogenesis in this species. In the present work, we investigated the cell growth dynamics, intracellular levels of proteins, starch and polyamines in suspension cultures of Pinus taeda established in plant growth regulator-free medium (BM0) and in medium supplemented with 2 M 2,4-dichlorophenoxyacetic acid, 0.5 M 6-benzylaminopurine and 0.5 M Kinetin (BM2). Cell cultures growing in BM0 medium showed an increase in the sedimented cell volume from 3.77 to 17.73 ml after 24 days of culture. Those cultured in BM2 medium showed an increase in the sedimented cell volume from 4.23 to 25.17 ml after 20 days of culture. Intracellular proteins levels increased during the exponential growth phase and starch levels decreased until the exponential phase, followed by a synthesis up to the stationary phase, in both BM0 and BM2 media. Highest putrescine levels occurred in cultures growing in BM0 medium and this was associated with the low cellular growth.  相似文献   

19.
Effects of growth conditions on mitochondrial morphology were studied in livingSaccharomyces cerevisiae cells by vital staining with the fluorescent dye dimethyl-aminostyryl-methylpyridinium iodine (DASPMI), fluorescence microscopy, and confocal-scanning laser microscopy. Cells from respiratory, ethanol-grown batch cultures contained a large number of small mitochondria. Conversely, cells from glucose-grown batch cultures, in which metabolism was respiro-fermentative, contained small numbers of large, branched mitochondria. These changes did not significantly affect the fraction of the cellular volume occupied by the mitochondria. Similar differences in mitochondrial morphology were observed in glucose-limited chemostat cultures. In aerobic chemostat cultures, glucose metabolism was strictly respiratory and cells contained a large number of small mitochondria. Anaerobic, fermentative chemostat cultivation resulted in the large, branched mitochondrial structures also seen in glucose-grown batch cultures. Upon aeration of a previously anaerobic chemostat culture, the maximum respiratory capacity increased from 10 to 70 µmole.min–1.g weight–1 within 10 h. This transition resulted in drastic changes of mitochondrial number, morphology and, consequently, mitochondrial surface area. These changes continued for several hours after the respiratory capacity had reached its maximum. Cyanide-insensitive oxygen consumption contributed ca. 50% of the total respiratory capacity in anaerobic cultures, but was virtually absent in aerobic cultures. The response of aerobic cultures to oxygen deprivation was qualitatively the reverse of the response of anaerobic cultures to aeration. The results indicate that mitochondrial morphology inS. cerevisiae is closely linked to the metabolic activity of this yeast: conditions that result in repression of respiratory enzymes generally lead to the mitochondrial morphology observed in anaerobically grown, fermenting cells.  相似文献   

20.
Volumetric mass transfer coefficients, K(L)a were measured over an aeration rate range from 0.1 to 1.0 vvm in a 1.2-L draft-tube-type airlift bioreactor for different Datura stramonium cell concentrations and correlated with superficial air velocity and rheological properties of the cell suspension. The measured K(L)a values (17-40 h(-1)) for a cell volume fraction of 0.2 (v/v) were approximately 2 times higher than those for the highest cell concentrations tested (cell volume fraction 0.7-0.8 v/v). Cell suspensions exhibited yield stress and pseudoplastic behavior. This behavior was described by the Casson model. The estimated yield stress values depended upon cell concentration with an exponent of 4.0. An empirical correlation based on the data for plant cell suspensions exhibiting yield stress was developed in order to determine aeration strategy for the plant cell cultivation in draft-tube-type airlift bioreactors: \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm K}_{\rm L} {\rm a} = {\rm A}({\rm U}_{{\rm gr}});{0.3} ({\rm \eta }_{{\rm eff}});{ - 0.4} $$\end{document} Aeration rates above 1.0 vvm caused a significant drop in cell yield and product content. Maximum growth and production were obtained at 0.6 vvm aeration. The cell and product yields obtained at 1.7 vvm were 2.8 times lower than the maximum values (25 g cell DW/L and 73.8 mg tropane alkaloid/L). The effects of the increased aeration rates on cell yield were also evaluated in terms of Reynolds stress. It was found that there was a relation between cell damage and the estimated Reynolds stress. The Reynolds stress estimated for the same aeration rate decreased with increasing cell concentration, suggesting that cells in the cultures at low cell concentrations are subjected to hydrodynamic damage. In the experiments with the cell cultures having a cell concentration of 0.3 (v/v), approximately 70% reduction in cell concentration was observed when the Reynolds stress was increased from 10 to 50 dyn/cm(2). (c) 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号