首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acyl-lipid desaturases are enzymes that convert a C-C single bond into a C=C double bond in fatty acids that are esterified to membrane-bound glycerolipids. Four types of acyl-lipid desaturase, namely DesA, DesB, DesC, and DesD, acting at the Delta12, Delta15, Delta9, and Delta6 positions of fatty acids respectively, have been characterized in cyanobacteria. These enzymes are specific for fatty acids bound to the sn-1 position of glycerolipids. In the present study, we have cloned two putative genes for a Delta9 desaturase, designated desC1 and desC2, from Nostoc species. The desC1 gene is highly similar to the desC gene that encodes a Delta9 desaturase that acts on C18 fatty acids at the sn-1 position. Homologues of desC2 are found in genomes of cyanobacterial species in which Delta9-desaturated fatty acids are esterified to the sn-2 position. Heterologous expression of the desC2 gene in Synechocystis sp. PCC 6803, in which a saturated fatty acid is found at the sn-2 position, revealed that DesC2 could desaturate this fatty acid at the sn-2 position. These results suggest that the desC2 gene is a novel gene for a Delta9 acyl-lipid desaturase that acts on fatty acids esterified to the sn-2 position of glycerolipids.  相似文献   

2.
In the course of the study of the biosynthesis of the fatty acid eicosapentaenoic acid (EPA) in the microalga Porphyridium cruentum, cells were pulse-labeled with various radiolabeled fatty acid precursors. Our data show that the major end products of the biosynthesis are EPA-containing galactolipids of a eukaryotic and prokaryotic nature. The prokaryotic molecular species contain EPA and arachidonic acid at the sn-1 position and C16 fatty acids, mainly 16:0, at the sn-2 positions, whereas in the eukaryotic species both positions are occupied by EPA or arachidonic acid. However, we suggest that both the eukaryotic and prokaryotic molecular species are formed in two pathways, [omega]6 and [omega]3, which involve cytoplasmic and chloroplastic lipids. In the [omega]6 pathway, cytoplasmic 18:2-phosphatidylcholine (PC) is converted to 20:4[omega]6-PC by a sequence that includes a [delta]6 desaturase, an elongation step, and a [delta]5 desaturase. In the minor [omega]3 pathway, 18:2-PC is presumably desaturated to 18:3[omega]3, which is sequentially converted by the enzymatic sequence of the [omega]6 pathway to 20:5[omega]3-PC. The products of both pathways are exported, as their diacylglycerol moieties, to the chloroplast to be galactosylated into their respective monogalactosyldiacylglycerol molecular species. The 20:4[omega]6 in both eukaryotic and prokaryotic monogalactosyldiacylglycerol can be further desaturated to EPA by a chloroplastic [delta]17 ([omega]3) desaturase.  相似文献   

3.
We have studied the specificity of the acyl-CoA:diglyceride acyltransferase reaction in lactating rat mammary gland to provide a rational explanation at the enzyme level for the nonrandom distribution of fatty acids in milk fat triglycerides. Acyl-CoA:diglyceride acyltransferase activity was measured using various diglyceride and radioactive acyl-CoA substrates; products were identified as triglycerides by thin-layer and gas-liquid chromatography. Most of the enzymatic activity was located in the microsomal fraction and showed a broad specificity for the acyl donors tested C10, C12, C14, C16, C18, and C18:1 CoA esters). The acyltransferase activity was highly specific for sn-1,2-diglyceride enantiomers; rac-1,3- and sn-2,3-diglycerides were relatively inactive. The acyl-CoA specificity was not affected by the type of 1,2-diglyceride acceptor offered, although dilaurin was the best acceptor and sn-1,2-dilaurin greater than sn-1,2-dimyristin greater than sn-1,2-dipalmitin greater than sn-1,2-distearin. We have previously shown that in the microsomal fraction from lactating rat mammary gland, the acyltransferase activities concerned with the conversion of sn-glycero-3-phosphate to diacylglycerophosphate show a very marked specificity for long chain acyl-CoA's. Therefore, we conclude that the predominant localization of long chain fatty acids in the 1 and 2 positions, and of shorter chain fatty acids in the 3 position of the glycerol backbone, results at least in part from the specificities of the mammary gland acyltransferases.  相似文献   

4.
1. Previous experiments showed that fatty acids were incorporated into triacylglycerols by homogenates of Ceratitis capitata larvae far more efficiently than by pharate adult homogenates. This metabolic behaviour of both stages of development of the insect has been interpreted throughout the existence of a different acyltransferase activity. To obtain new data on the acyltransferase mechanism, a time-course of the stereospecific incorporation of labelled myristic, palmitic, oleic and linoleic acids into the sn-positions of triacylglycerols has been followed. 2. Studies on the stereospecific incorporation of labelled fatty acids confirmed previous results. Palmitic acid was mainly incorporated into sn-1 and sn-3 positions whereas position 2 exhibited a low incorporation. Myristic acid acylated sn-3 position at a higher rate than it acylated the other sn-positions. Oleic acid was more specifically distributed than palmitic acid and linoleic acid was more efficiently incorporated than the monounsaturated acid. All these data reflect substrate differences in the acyltransferase activity of larval homogenates. Pharate adult homogenates incorporated fatty acids very scarcely and mainly into positions (1 + 3). 3. Kinetics of incorporation of labelled fatty acids into the sn-positions points to a non-random distribution with respect to the major saturated and unsaturated fatty acids in triacylglycerols of larvae of Ceratitis capitata.  相似文献   

5.
Embryos of Cuphea lanceolata have more than 80 mol% of decanoic acid ('capric acid') in their triacylglycerols, while this fatty acid is virtually absent in phosphatidylcholine (PtdCho). Seed development was complete 25-27 days after pollination, with rapid triacylglycerol deposition occurring between 9 and 24 days. PtdCho amounts increased until day 15 after pollination. Analysis of embryo lipids showed that the diacylglycerol (DAG) pool consisted of mainly long-chain molecular species, with a very small amount of mixed medium-chain/long-chain glycerols. Almost 100% of the fatty acid at position sn-2 in triacylglycerols (TAG) was decanoic acid. When equimolar mixtures of [14C]decanoic and [14C]oleic acid were fed to whole detached embryos, over half of the radioactivity in the DAG resided in [14C]oleate, whereas [14C]decanoic acid accounted for 93% of the label in the TAG. Microsomal preparations from developing embryos at the mid-stage of TAG accumulation catalysed the acylation of [14C]glycerol 3-phosphate with either decanoyl-CoA or oleoyl-CoA, resulting in the formation of phosphatidic acid (PtdOH), DAG and TAG. Very little [14C]glycerol entered PtdCho. In combined incubations, with an equimolar supply of [14C]oleoyl-CoA and [14C]decanoyl-CoA in the presence of glycerol 3-phosphate, the synthesized PtdCho species consisted to 95% of didecanoic and dioleic species. The didecanoyl-glycerols were very selectively utilized over the dioleoylglycerols in the production of TAG. Substantial amounts of [14C]oleate, but not [14C]decanoate, entered PtdCho. The microsomal preparations of developing embryos were used to assess the acyl specificities of the acyl-CoA:sn-glycerol-3-phosphate acyltransferase (GPAT, EC 2.3.1.15) and the acyl-CoA:sn-1-acyl-glycerol-3-phosphate acyltransferase (LPAAT, EC 2.3.1.51) in Cuphea lanceolata embryos. The efficiency of acyl-CoA utilization by the GPAT was in the order decanoyl = dodecanoyl greater than linoleoyl greater than myristoyl = oleoyl greater than palmitoyl. Decanoyl-CoA was the only acyl donor to be utilized to any extent by the LPAAT when sn-decanoylglycerol 3-phosphate was the acyl acceptor. sn-1-Acylglycerol 3-phosphates with acyl groups shorter than 16 carbon atoms did not serve as acyl acceptors for long-chain (greater than or equal to 16 carbon atoms) acyl-CoA species. On the basis of the results obtained, we propose a schematic model for triacylglycerol assembly and PtdCho synthesis in a tissue specialized in the synthesis of high amounts of medium-chain fatty acids.  相似文献   

6.
Biosynthesis of polyunsaturated fatty acids in C. elegans is initiated by the introduction of a double bond at the delta9 position of a saturated fatty acid. We identified three C. elegans fatty acid desaturase genes related to the yeast delta9 desaturase OLE1 and the rat stearoyl-CoA desaturase SCD1. Heterologous expression of all three genes rescues the fatty acid auxotrophy of the yeast delta9 desaturase mutant ole1. Examination of the fatty acid composition of the transgenic yeast reveals striking differences in the substrate specificities of these desaturases. Two desaturases, FAT-6 and FAT-7, readily desaturate stearic acid (18:0) and show less activity on palmitic acid (16:0). In contrast, the other desaturase, FAT-5, readily desaturates palmitic acid (16:0), but shows nearly undetectable activity on the common delta9 substrate stearic acid. This is the first report of a palmitoyl-CoA-specific membrane fatty acid desaturase.  相似文献   

7.
Since tumor cells show abnormal fatty acid composition, it is likely that their desaturase systems were affected to some extent. Although desaturase activities in experimental tumors have been evaluated, to our knowledge, fatty acid desaturases in human neoplasms and particularly in human tumors grown in nude mice have not been assessed yet. We have therefore, chosen a rapidly growing human lung mucoepidermoid carcinoma (HLMC) grown in nude mice to study microsomal fatty acid desaturation and chain elongation activities. Tumor microsomal proteins were incubated with unlabeled malonyl-CoA and one of the following fatty acids: [1-14C]palmitic (16:0), [1-14C]linoleic (18:2), alpha-[1-14C]linolenic (alpha-18:3), and unlabeled gamma-linolenic (gamma-18:3) plus [2-14C]malonyl-CoA. Data show that HLMC microsomes were capable to desaturate 16:0, alpha-18:3, and dihomogammalinolenic acids (20:3) by delta 9, delta 6 and delta 5 desaturase, respectively; however, delta 6 desaturase activity on [14C]18:2 was not detected. The microsomal elongation system was active in all fatty acid series tested except for 18:2. These findings show that the undetectable activity for 18:2 desaturation is not exclusively found in experimental tumors.  相似文献   

8.
gamma-Linolenic acid (GLA), a nutritionally important fatty acid in mammals, is synthesized by a delta6 desaturase. Here, we report identification of PiD6, a new cDNA from the oleaginous fungus, Pythium irregulare, encoding a 459-amino acid protein that shares sequence similarity to carboxyl-directed desaturases from various species. Expression of PiD6 in yeast (Saccharomyces cerevisiae) revealed that it converts exogenously supplied linoleic acid into GLA, indicating that it encodes a delta6 fatty acid desaturase. Expression of the desaturase in Brassica juncea under the control of the Brassica napus napin promoter resulted in production of three delta6 unsaturated fatty acids (18:2-6, 9; 18:3-6, 9, 12; and 18:4-6, 9, 12, 15) in seeds. Among them, GLA (18:3-6, 9, 12) is the most abundant and accounts for up to 40% of the total seed fatty acids. Lipid class and positional analysis indicated that GLA is almost exclusively incorporated into triacylglycerol (98.5%) with only trace amounts found in the other lipids. Within triacylglycerols, GLA is more abundant at the sn-2 position.  相似文献   

9.
Organisms that colonize solid surfaces, like Myxococcus xanthus, use novel signalling systems to organize multicellular behaviour. Phosphatidylethanolamine (PE) containing the fatty acid 16:1omega5 (Delta11) elicits a chemotactic response. The phenomenon was examined by observing the effects of PE species with varying fatty acid pairings. Wild-type M. xanthus contains 17 different PE species under vegetative conditions and 19 at the midpoint of development; 13 of the 17 have an unsaturated fatty acid at the sn-1 position, a novelty among Proteobacteria. Myxococcus xanthus has two glycerol-3-phosphate acyltransferase (PlsB) homologues which add the sn-1 fatty acid. Each produces PE with 16:1 at the sn-1 position and supports growth and fruiting body development. Deletion of plsB1 (MXAN3288) results in more dramatic changes in PE species distribution than deletion of plsB2 (MXAN1675). PlsB2 has a putative N-terminal eukaryotic fatty acid reductase domain and may support both ether lipid synthesis and PE synthesis. Disruption of a single sn-2 acyltransferase homologue (PlsC, of which M. xanthus contains five) results in minor changes in membrane PE. Derivatization of purified PE extracts with dimethyldisulfide was used to determine the position of the double bonds in unsaturated fatty acids. The results suggest that Delta5 and Delta11 desaturases may create the double bonds after synthesis of the fatty acid. Phosphatidylethanolamine enriched for 16:1 at the sn-1 position stimulates chemotaxis more strongly than PE with 16:1 enriched at the sn-2 position. It appears that the deployment of a rare fatty acid (16:1omega5) at an unusual position (sn-1) has facilitated the evolution of a novel cell signal.  相似文献   

10.
The plsC gene of Escherichia coli encoding sn-1-acylglycerol-3-phosphate acyltransferase was modified by inserting an endoplasmic reticulum retrieval signal to its 3 end and introduced into rapeseed (Brassica napus L.) plants under the control of a napin promotor. In developing seeds from transgenic plants an sn-1-acylglycerol-3-phosphate acyltransferase activity was detectable which showed substrate specificities typical of the E. coli enzyme. Moreover, seed oil from the transformants unlike that from untransformed plants contained substantial amounts of triacylglycerol species esterified with very-long-chain fatty acids at each glycerol position. Analysis of fatty acids at the sn-2 position of triacylglycerol showed hardly any very-long-chain fatty acids in untransformed plants, but in certain transformants these fatty acids were present, namely about 4% erucic acid and 9% eicosenoic acid. These data demonstrate that the bacterial acyltransferase can function in developing rapeseed and alters the stereochemical composition of transgenic rape seed oil by directing very-long-chain fatty acids, especially cis-11 eicosenoic acid, to its sn-2 position.  相似文献   

11.
Lipid biosynthesis in developing perilla seeds   总被引:3,自引:0,他引:3  
Ichihara K  Suda Y 《Phytochemistry》2003,63(2):139-143
In developing seeds of Perilla frutescens var. crispa, the triacylglycerol fraction was found to accumulate between 15 and 19 days after flowering. Of this, 65% of the total fatty acids was alpha-linolenic acid in the mature seeds, with the latter being esterified in comparable amounts at all positions (sn-1, 2 and 3) of the glycerol residue. It was also demonstrated that, 1-acylglycerol-3-phosphate acyltransferase, which catalyzes esterification at the sn-2 position of the glycerol backbone, showed low activities for alpha-linolenoyl-CoA as substrate. These findings suggest that the diacylglycerol precursor for triacylglycerol synthesis is not directly derived from phosphatidic acid through the glycerol phosphate pathway.  相似文献   

12.
13.
C Alban  J Joyard    R Douce 《The Biochemical journal》1989,259(3):775-783
The availability of methods to fractionate non-green plastids and to prepare their limiting envelope membranes [Alban, Joyard & Douce (1988) Plant Physiol. 88, 709-717] allowed a detailed analysis of the biosynthesis of lysophosphatidic acid, phosphatidic acid, diacylglycerol and monogalactosyl-diacylglycerol (MGDG) in two different types of non-green starch-containing plastids: plastids isolated from cauliflower buds and amyloplasts isolated from sycamore cells. An enzyme [acyl-ACP (acyl carrier protein):sn-glycerol 3-phosphate acyltransferase) recovered in the soluble fraction of non-green plastids transfers oleic acid from oleoyl-ACP to the sn-1 position of sn-glycerol 3-phosphate to form lysophosphatidic acid. Then a membrane-bound enzyme (acyl-ACP:monoacyl-sn-glycerol 3-phosphate acyltransferase), localized in the envelope membrane, catalyses the acylation of the available sn-2 position of 1-oleoyl-sn-glycerol 3-phosphate by palmitic acid from palmitoyl-ACP. Therefore both the soluble phase and the envelope membranes are necessary for acylation of sn-glycerol 3-phosphate. The major difference between cauliflower (Brassica oleracea) and sycamore (Acer pseudoplatanus) membranes is the very low level of phosphatidate phosphatase activity in sycamore envelope membrane. Therefore, very little diacylglycerol is available for MGDG synthesis in sycamore, compared with cauliflower. These findings are consistent with the similarities and differences described in lipid metabolism of mature chloroplasts from 'C18:3' and 'C16:3' plants (those with MGDG containing C18:3 and C16:3 fatty acids). Sycamore contains only C18 fatty acids in MGDG, and the envelope membranes from sycamore amyloplasts have a low phosphatidate phosphatase activity and therefore the enzymes of the Kornberg-Pricer pathway have a low efficiency of incorporation of sn-glycerol 3-phosphate into MGDG. By contrast, cauliflower contains MGDG with C16:3 fatty acid, and the incorporation of sn-glycerol 3-phosphate into MGDG by the enzymes associated with envelope membranes is not limited by the phosphatidate phosphatase. These results demonstrate that: (1) non-green plastids employ the same biosynthetic pathway as that previously established for chloroplasts (the formation of glycerolipids is a general property of all plastids, chloroplasts as well as non-green plastids), (2) the envelope membranes are the major structure responsible for the biosynthesis of phosphatidic acid, diacylglycerol and MGDG, and (3) the enzymes of the envelope Kornberg-Pricer pathway have the same properties in non-green starch-containing plastids as in mature chloroplasts from C16:3 and C18:3 plants.  相似文献   

14.
Developing cocoa cotyledons accumulate initially an unsaturated oil which is particularly rich in oleate and linoleate. However, as maturation proceeds, the characteristic high stearate levels appear in the storage triacylglycerols. In the early stages of maturation, tissue slices of developing cotyledons (105 days post anthesis, dpa) readily accumulate radioactivity from [14C]acetate into the diacylglycerols and label predominantly palmitate and oleate. In older tissues (130 dpa), by contrast, the triacylglycerols are extensively labelled and, at the same time, there is an increase in the percentage labelling of stearate. Thus, the synthesis of triacylglycerol and the production of stearate are co-ordinated during development. The relative labelling of the phospholipids (particularly phosphatidylcholine) was rather low at both stages of development which contrasts with oil seeds that accumulate a polyunsaturated oil (e.g. safflower). Microsomal membrane preparations from the developing cotyledons readily utilised an equimolar [14C]acyl-CoA substrate (consisting of palmitate, stearate and oleate) and glycerol 3-phosphate to form phosphatidate, diacylglycerol and triacylglycerol. Analysis of the [14C]acyl constituents at the sn-1 and sn-2 positions of phosphatidate and diacylglycerol revealed that the first acylase enzyme (glycerol 3-phosphate acyltransferase) selectively utilised palmitate over stearate and excluded oleate, whereas the second acylase (lysophosphatidate acyltransferase) was highly selective for the unsaturated acyl-CoA. On the other hand, the third acylase (diacylglycerol acyltransferase) exhibited an almost equal selectivity for palmitate and stearate. Thus, stearate is preferentially enriched at position sn-3 of triacylglycerol at 120–130 dpa because of the relatively higher selectivity of the diacylglycerol acyltransferase for this fatty acid compared with those of the other two acylation enzymes.Abbreviation dpa days post anthesis We are grateful to Drs. G. Pettipher (Cadbury-Schweppes, Reading, UK), M. End and P. Hadley (Department of Horticulture, University of Reading) for the supply of cocoa pods and to the Agricultural and Food Research Council for financial support. We also wish to thank Dr. S. Stymne (Swedish University of Agricultural Sciences, Uppsala, Sweden) for a generous gift of acyl-CoA substrates.  相似文献   

15.
Metabolism of exogenous long-chain fatty acids by spinach leaves   总被引:8,自引:0,他引:8  
When applied in liquid paraffin to the upper surface of expanding spinach leaves, [1-14C]palmitic acid was efficiently and exclusively incorporated into the sn-1 position of cellular glycerolipids, principally phosphatidylcholine and triacylglycerol. A slow transfer of fatty acids from phosphatidylcholine to chloroplast glycolipids subsequently occurred with the positional specificity of the label remaining intact. Labeled palmitate at the sn-1 position of monogalactosyldiacylglycerol was desaturated to hexadecatrienoate so that 1-[14C]hexadecatrienoyl-2-linolenoyl-3-galactosoylglycerol became the major labeled species of the lipid between 8 and 24 h. There was no evidence of deacylation/reacylation reactions modifying the acyl compositions of spinach leaf glycerolipids for at least 48 h after labeling with [1-14C]palmitic acid; even the partially prokaryotic glycerolipids remained firmly labeled at the sn-1 position. Exogenous [1-14C]stearic acid was also incorporated into the sn-1 position of MGD, presumably by the same mechanism, and was there desaturated to [14C]linolenate. Exogenous [1-14C]oleic acid was initially incorporated equally into both sn-1 and sn-2 positions of phosphatidylcholine, and was desaturated to linoleate at both positions before the label was rapidly transferred to monogalactosyldiacylglycerol. There, desaturation of linoleate to linolenate took place. Galactolipids remained equally labeled at both positions throughout the 6 days of the experiment, but label was concentrated in the 1-saturated-2-[14C]linolenoyl molecular species of phosphatidylcholine as those species with two [14C]linoleoyl residues were drawn off for monogalactolipid synthesis. Glycerolipids synthesised from exogenous [1-14C]acetate by spinach leaves were labeled equally at both the sn-1 and the sn-2 positions. These results are interpreted as providing strong support for the two-pathway scheme of glycerolipid synthesis in plants.  相似文献   

16.
A mutant of Escherichia coli K-12 defective in 1-acyl-sn-glycerol-3-phosphate acyltransferase has been isolated. At the permissive temperature for growth, 30 degrees C, 20% of the total cellular glycerophospholipids is 1-acyl-sn-glycerol-3-phosphate, as identified by mass spectral analysis and proton NMR. This percentage of 1-acyl-sn-glycerol-3-phosphate rises to about 30% when the temperature of the culture is shifted to 42 degrees C. This increase is primarily at the expense of phosphatidylethanolamine. Extracts from cells harboring the plsC mutation have no detectable 1-acyl-sn-glycerol-3-phosphate acyltransferase activity. The fatty acid composition of the accumulated 1-acyl-sn-glycerol-3-phosphate is about 60% cis-vaccenate and 40% palmitate, with no detectable amounts of palmitoleate or other fatty acids, consistent with the known fatty acid composition of the sn-1 position of glycerophospholipids. The isolation of this gene, plsC, completes the list of genes known to be required for the synthesis of the major glycerophospholipids in E. coli.  相似文献   

17.
The desaturation of long chain fatty acids is a ubiquitous transformation which plays a critical role in the biosynthesis of lipids. Of particular interest to the bioorganic chemist is the unique ability of desaturases to oxidize unactivated hydrocarbon chains in a chemo-, regio- and stereoselective manner. The mechanism of membrane-bound desaturases has been examined using regiospecifically labelled analogues bearing deuterium, sulfur or fluorine-substituted methylene isosteres. These probes have been applied in the study of several biomedically important desaturase systems including a prototypical yeast stearoyl CoA delta(9) desaturase. In all cases, it has been found that the dehydrogenation (desaturation) process is initiated by a kinetically important hydrogen activation step at the carbon of the incipient double bond which is closest to the acyl terminus of the fatty acid chain. These results point to a common active site architecture which is highly conserved among a wide range of membranous desaturases.  相似文献   

18.
To characterize the fatty acid desaturase produced by the fat-1 gene from the nematode Caenorhabditis elegans, the functional expression of this enzyme was effected in the yeast Saccharomyces cerevisiae. The GC-MS analysis of desaturated products derived from various fatty acids, including deuterium-labeled thia fatty acids supplied to growing cultures of transformed yeast, has defined the substrate requirements, regiochemistry, and cryptoregiochemistry of the enzyme. The desaturase acts on substrates of 16-20 carbons with a preference for omega-6 fatty acids, and its regioselectivity was confirmed to be that of an omega-3 desaturase. (omega-x refers to a double bond or desaturation between carbons x and x+1, counting from the methyl end of a fatty acid.) The primary deuterium kinetic isotope effects (KIEs) at C-15 and C-16 of a C18 fatty acid analogue were measured via competitive incubation experiments: While k(H)/k(D) at the omega-3 position was shown to be large (7.8 +/- 0.4), essentially no KIE at the omega-2 position was observed (k(H)/k(D) = 0.99 +/- 0.04). This result indicates that omega-3 desaturation is initiated by an energetically difficult C-H bond cleavage at the carbon closer to the carboxyl terminus. The results are discussed in the context of a general model relating the structure and function of membrane-bound fatty acid desaturases featuring differing regioselectivities.  相似文献   

19.
Y Tasaka  Z Gombos  Y Nishiyama  P Mohanty  T Ohba  K Ohki    N Murata 《The EMBO journal》1996,15(23):6416-6425
Acyl-lipid desaturases introduce double bonds (unsaturated bonds) at specifically defined positions in fatty acids that are esterified to the glycerol backbone of membrane glycerolipids. The desA, desB and desD genes of Synechocystis sp. PCC 6803 encode acyl-lipid desaturases that introduce double bonds at the delta12, omega3 and delta6 positions of C18 fatty acids respectively. The mutation of each of these genes by insertion of an antibiotic resistance gene cartridge completely eliminated the corresponding desaturation reaction. This system allowed us to manipulate the number of unsaturated bonds in membrane glycerolipids in this organism in a step-wise manner. Comparisons of the variously mutated cells revealed that the replacement of all polyunsaturated fatty acids by a monounsaturated fatty acid suppressed growth of the cells at low temperature and, moreover, it decreased the tolerance of the cells to photoinhibition of photosynthesis at low temperature by suppressing recovery of the photosystem II protein complex from photoinhibitory damage. However, the replacement of tri- and tetraunsaturated fatty acids by a diunsaturated fatty acid did not have such effects. These findings indicate that polyunsaturated fatty acids are important in protecting the photosynthetic machinery from photoinhibition at low temperatures.  相似文献   

20.
The biosynthesis of polyunsaturated fatty acids (PUFAs) in different organisms can involve a variety of pathways, catalyzed by a complex series of desaturation and elongation steps. A range of different desaturases have been identified to date, capable of introducing double bonds at various locations on the fatty acyl chain. Some recently identified novel desaturases include a delta4 desaturase from marine fungi, and a bi-functional delta5/delta6 desaturase from zebrafish. Using molecular genetics approaches, these desaturase genes have been isolated, identified, and expressed in variety of heterologous hosts. Results from these studies will help increase our understanding of the biochemistry of desaturases and the regulation of PUFA biosynthesis. This is of significance because PUFAs play critical roles in multiple aspects of membrane physiology and signaling mechanisms which impact human health and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号