首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human adenovirus type 5 (Ad5) E1B 55-kDa protein is required for selective nuclear export of viral late mRNAs from the nucleus and concomitant inhibition of export of cellular mRNAs in HeLa cells and some other human cell lines, but its contributions(s) to replication in normal human cells is not well understood. We have therefore examined the phenotypes exhibited by viruses carrying mutations in the E1B 55-kDa protein coding sequence in normal human fibroblast (HFFs). Ad5 replicated significantly more slowly in HFFs than it does in tumor cells, a difference that is the result of delayed entry into the late phase of infection. The A143 mutation, which specifically impaired export of viral late mRNAs from the nucleus in infected HeLa cells (R. A. Gonzalez and S. J. Flint, J. Virol. 76:4507-4519, 2002), induced a more severe defect in viral mRNA export in HFFs. This observation indicates that the E1B 55-kDa protein regulates mRNA export during the late phase of infection of normal human cells. Other mutants exhibited phenotypes not observed in HeLa cells. In HFFs infected by the null mutant Hr6, synthesis of viral late mRNAs and proteins was severely impaired. Such defects in late gene expression were the result of inefficient progression into the late phase of infection, for viral DNA synthesis was 10-fold less efficient in Hr6-infected HFFs than in cells infected by Ad5. Similar, but less severe, defects in viral DNA synthesis were induced by the insertion mutation H224, which has been reported to inhibit binding of the E1B 55-kDa protein to p53 (C. C. Kao, P. R. Yew, and A. J. Berk, Virology 179:806-814, 1990).  相似文献   

2.
The genome complexities of the principal intracellular viral complementary RNA species of the snowshoe hare bunyavirus have been analyzed by duplex analyses involving hybridization of complementary RNA to individual 32P-labeled viral RNA species (large, L; medium, M; and small, S), recovery of nuclease-resistant duplexes, and determination of the oligonucleotide fingerprints of the protected 32P-labeled viral sequences. The result for the M RNA (which codes for the glycoproteins G1 and G2; J. R. Gentsch and D. H. L. Bishop, J. Virol. 30:767-770, 1979) indicates that there is a single polycistronic M mRNA. Similar results were obtained for the L and S RNA species. In vitro translation studies with the S complementary RNA species of snowshoe hare virus as well as melted purified S duplexes substantiate earlier genetic and molecular studies (J. R. Gentsch and D. H. L. Bishop, J. Virol. 28:417-419, 1978; J. Gentsch, D. H. L. Bishop, and J. F. Obijeski, J. Gen. Virol. 34-257-268, 1977), which indicate that S mRNA codes for the virion nucleocapsid protein N.  相似文献   

3.
4.
Translation of most cellular mRNAs involves cap binding by the translation initiation complex. Among this complex of proteins are cap-binding protein eIF4E and the eIF4E kinase Mnk1. Cap-dependent mRNA translation generally correlates with Mnk1 phosphorylation of eIF4E when both are bound to eIF4G. During the late phase of adenovirus (Ad) infection translation of cellular mRNA is inhibited, which correlates with displacement of Mnk1 from eIF4G by the viral 100-kDa (100K) protein and dephosphorylation of eIF4E. Here we describe the molecular mechanism for 100K protein displacement of Mnk1 from eIF4G and elucidate a structural basis for eIF4G interaction with Mnk1 and 100K proteins and Ad inhibition of cellular protein synthesis. The eIF4G-binding site is located in an N-terminal 66-amino-acid peptide of 100K which is sufficient to bind eIF4G, displace Mnk1, block eIF4E phosphorylation, and inhibit eIF4F (cap)-dependent cellular mRNA translation. Ad 100K and Mnk1 proteins possess a common eIF4G-binding motif, but 100K protein binds more strongly to eIF4G than does Mnk1. Unlike Mnk1, for which binding to eIF4G is RNA dependent, competitive binding by 100K protein is RNA independent. These data support a model whereby 100K protein blocks cellular protein synthesis by coopting eIF4G and cap-initiation complexes regardless of their association with mRNA and displacing or blocking binding by Mnk1, which occurs only on preassembled complexes, resulting in dephosphorylation of eIF4E.  相似文献   

5.
The proteins that interact with cytoplasmic and nuclear polyadenylated RNA in adenovirus type 5 (Ad5) infection of HeLa cells were examined by UV-induced RNA-protein cross-linking in intact cells. The Ad5 100-kilodalton late nonvirion protein (100K protein) was cross-linked to both host and viral polyadenylated cytoplasmic RNA (mRNA). The cross-linking of the 100K protein to mRNA appears to correlate with productive infection, because the protein is not cross-linked to mRNA in abortive infection of wild-type Ad5 in monkey cells (CV-1) even though normal amounts of it are produced. However, when CV-1 cells are infected with Ad5 hr404, and Ad5 mutant which overcomes the host restriction to wild-type Ad5 infection in these cells, the 100K protein is cross-linked to mRNA. To identify and obtain antibodies to RNA-contacting proteins, a mouse was immunized with oligo(dT)-selected cross-linked RNA-protein complexes from Ad5-infected cells and the serum was used for immunoblotting experiments. It was found that in addition to the 100K protein, the Ad5 72K DNA-binding protein is also associated with RNA in the infected cells. The 72K DNA-binding protein is cross-linked to polyadenylated nuclear RNA sequences. These findings indicate that adenovirus proteins interact with RNAs in the infected cell and suggest possible mechanisms for the effects of the virus on mRNA metabolism.  相似文献   

6.
J T Patton 《Journal of virology》1996,70(11):7940-7947
Recent studies have shown that disrupted (open) rotavirus cores have an associated replicase activity which supports the synthesis of dsRNA from viral mRNA in a cell-free system (D. Chen, C. Q.-Y. Zeng, M. J. Wentz, M. Gorziglia, M. K. Estes, and R. F. Ramig, J. Virol. 68:7030-7039, 1994). To determine which of the core proteins, VP1, VP2, or VP3, recognizes the template mRNA during RNA replication, SA11 open cores were incubated with 32P-labeled RNA probes of viral and nonviral origin and the reaction mixtures were analyzed for the formation of RNA-protein complexes by gel mobility shift assay. In mixtures containing a probe representing the 3' end of SA11 gene 8 mRNA, two closely migrating RNA-protein complexes, designated s and f, were detected. The interaction between the RNA and protein of the s and f complexes was shown to be specific by competitive binding assay with tRNA and brome mosaic virus RNA. By electrophoretic analysis of RNA-protein complexes recovered from gels, VP1 was shown to be the only viral protein component of the complexes, thereby indicating that VP1 specifically recognizes the 3' end of gene 8 mRNA. Analysis of VP1 purified from open cores by glycerol gradient centrifugation verified that VP1 recognizes the 3' end of viral mRNA but also showed that in the absence of other viral proteins, VP1 lacks replicase activity. When reconstituted with VP2-rich portions of the gradient, VP1 stimulated levels of replicase activity severalfold. These data indicate that VP1 can bind to viral mRNA in the absence of any other viral proteins and suggest that VP2 must interact with the RNA-protein complex before VP1 gains replicase activity.  相似文献   

7.
C Z Lee  J H Lin  M Chao  K McKnight    M M Lai 《Journal of virology》1993,67(4):2221-2227
Hepatitis delta antigen (HDAg) is an RNA-binding protein with binding specificity for hepatitis delta virus (HDV) RNA (J. H. Lin, M. F. Chang, S. C. Baker, S. Govindarajan, and M. M. C. Lai, J. Virol. 64:4051-4058, 1990). By amino acid sequence homology search, we have identified within its RNA-binding domain two stretches of an arginine-rich motif (ARM), which is present in many prokaryotic and eukaryotic RNA-binding proteins. The first one is KERQDHRRRKA and the second is EDEKRERRIAG, and they are separated by 29 amino acids. Deletion of either one of these ARM sequences resulted in the total loss of the in vitro RNA-binding activity of HDAg. Thus, HDAg is different from other RNA-binding proteins in that it requires two ARM-like sequences for its RNA-binding activity. Replacement of the spacer sequence between the two ARMs with a shorter stretch of sequence also reduced RNA binding in vitro. Furthermore, site-specific mutations of the basic amino acid residues in both ARMs resulted in the total loss or reduction of RNA-binding activity. The biological significance of the RNA-binding activity was studied by examining the trans-activating activity of the RNA-binding mutants. The plasmids expressing HDAgs with various mutations in the RNA-binding motifs were cotransfected with a replication-defective HDV dimer cDNA construct into COS cells. It was found that all the HDAg mutants which had lost the in vitro RNA-binding activity also lost the ability to complement the defect of HDV RNA replication. We conclude that the trans-activating function of HDAg requires its binding to HDV RNA.  相似文献   

8.
Adenovirus simultaneously inhibits cap-dependent host cell mRNA translation while promoting the translation of its late viral mRNAs during infection. Studies previously demonstrated that tyrosine kinase activity plays a central role in the control of late adenovirus protein synthesis. The tyrosine kinase inhibitor genistein decreases late viral mRNA translation and prevents viral inhibition of cellular protein synthesis. Adenovirus protein 100k blocks cellular mRNA translation by disrupting the cap-initiation complex and promotes viral mRNA translation through an alternate mechanism known as ribosome shunting. 100k protein interaction with initiation factor eIF4G and the viral 5' noncoding region on viral late mRNAs, known as the tripartite leader, are both essential for ribosome shunting. We show that adenovirus protein 100k promotes ribosome shunting in a tyrosine phosphorylation-dependent manner. The primary sites of phosphorylated tyrosine on protein 100k were mapped and mutated, and two key sites are shown to be essential for protein 100k to promote ribosome shunting. Mutation of the two tyrosine phosphorylation sites in 100k protein does not impair interaction with initiation factor 4G, but it severely reduces association of 100k with tripartite leader mRNAs. 100k protein therefore promotes ribosome shunting and selective translation of viral mRNAs by binding specifically to the adenovirus tripartite leader in a phosphotyrosine-dependent manner.  相似文献   

9.
Theadenovirus type 5 (Ad5) E1B-55K and E4orf6 proteins are required together to stimulate viral late nuclear mRNA export to the cytoplasm and to restrict host cell nuclear mRNA export during the late phase of infection. Previous studies have shown that these two viral proteins interact with the cellular proteins elongins B and C, cullin 5, RBX1, and additional cellular proteins to form an E3 ubiquitin-protein ligase that polyubiquitinates p53 and probably one or more subunits of the MRE11-RAD50-NBS1 (MRN) complex, directing their proteasomal degradation. The MRN complex is required for cellular DNA double-strand break repair and induction of the DNA damage response by adenovirus infection. To determine if the ability of E1B-55K and E4orf6 to stimulate viral late mRNA nuclear export requires the ubiquitin-protein ligase activity of this viral ubiquitin-protein ligase complex, we designed and expressed a dominant-negative mutant form of cullin 5 in HeLa cells before infection with wild-type Ad5 or the E1B-55K null mutant dl1520. The dominant-negative cullin 5 protein stabilized p53 and the MRN complex, indicating that it inhibited the viral ubiquitin-protein ligase but had no effect on viral early mRNA synthesis, early protein synthesis, or viral DNA replication. However, expression of the dominant-negative cullin 5 protein caused a decrease in viral late protein synthesis and viral nuclear mRNA export similar to the phenotype produced by mutations in E1B-55K. We conclude that the stimulation of adenovirus late mRNA nuclear export by E1B-55K and E4orf6 results from the ubiquitin-protein ligase activity of the adenovirus ubiquitin-protein ligase complex.  相似文献   

10.
RNA-binding proteins of bovine rotavirus.   总被引:14,自引:9,他引:14       下载免费PDF全文
  相似文献   

11.
12.
In an effort to explore the molecular basis for agonist-induced destabilization of beta-adrenergic receptor mRNA, we investigated the nature of RNA-binding proteins both in untreated and agonist-treated DDT1-MF2 smooth muscle cells. Messenger RNAs for the alpha 1b-, beta 1-, and beta 2-adrenergic receptors as well as for beta-globin were transcribed in vitro, incubated with cytosolic fractions, covalently cross-linked by short-wave UV light, and analyzed by SDS-polyacrylamide gel electrophoresis. A prominent M(r) 35,000 radiolabeled protein(s) with the following characteristics was identified: (i) binds selectively to beta 1- and beta 2-adrenergic receptor mRNAs, both of which undergo agonist-induced down-regulation; (ii) does not bind to either alpha 1b-adrenergic receptor mRNA, which does not undergo agonist induced down-regulation, or to beta-globin mRNA; (iii) displays binding to beta 2-adrenergic receptor mRNA that is selectively competed by poly(U) RNA, but not poly(A), -(C), or -(G) RNA; and (iv) displays binding to receptor mRNA that can be competed by RNA harboring destabilizer sequences that are AU-rich and AUUUA pentamer-rich. The abundance of the M(r) 35,000 RNA-binding protein selective for beta-adrenergic receptor message, a factor we term beta ARB protein, varies inversely with the level of receptor mRNA, being induced by agonists that down-regulate receptor mRNA.  相似文献   

13.
14.
Messenger ribonucleic acid (mRNA) from cells productively infected with adenovirus type 2 was isolated by affinity chromatography on polyuridylic acid [poly (U)] bound to Sepharose. At least 90% of the polyadenylic acid [poly (A)]-containing polysomal mRNA was retained by the poly (U) Sepharose and thus separated from more than 95% of the ribosomal RNA and transfer RNA. In these experiments, 65% of the early (3 to 5 hr postinfection) and 85% of the late (14 to 16 hr postinfection) virus-specific RNA was retained by the poly (U) Sepharose. Early in the infection 18%, and late in the infection more than 95%, of the poly (A)-containing fraction, eluted from the poly (U) Sepharose with 90% formamide, was adenovirus-specific, as shown by exhaustive hybridization. Different patterns, containing several distinct species of viral mRNA, were detected early and late in the infectious cycle. No distinct viral mRNA lacking poly (A) was discovered.  相似文献   

15.
In the nucleus of HeLa cells late after infection with adenovirus type 2 mRNA-sequences which are processed via RNA splicing are attached to the nuclear matrix (Mariman et al., 1982). Although the mRNA, which codes for polypeptide IX, is not formed via splicing, about 70% of the non-polyadenylated pre-mRNA and the polyadenylated pIX mRNA are bound to the matrix structure, indicating that polyadenylation is performed while the RNA is associated with the matrix. Binding to the nuclear matrix seems to be a common property of all mRNA-sequences in the nucleus. At the late stage of infection most of the newly synthesized mRNAs which appear in the cytoplasm are viral specific (Beltz & Flint, 1979). Kinetic analysis of the newly synthesized poly(A)-containing mRNA on sucrose gradients reveals that 7-12 S messengers appear more rapidly in the cytoplasm than messengers larger than 13 S. More specifically, the nuclear exit time of the pIX-mRNA, which is the major 9 S adenoviral messenger late after infection, was determined to be about 4 min, while messengers transcribed from the late region 3 need more than 16 min to arrive in the cytoplasm. In the cytoplasm about 70% of the mRNA is bound to the cytoskeletal framework, while 30% remains as free mRNP. Analysis of the mRNA in both fractions reveals that L3-, E1B- and pIX-specific polyadenylated mRNA preferably exist as cytoskeleton-bound mRNA. However, significant differences occur in the partition of specific messengers over free and cytoskeletal RNA fractions.  相似文献   

16.
17.
The adenovirus type 5 mutant dl1520 was engineered previously to be completely defective for E1B-55K functions. Recently, this mutant (also known as ONYX-015) has been suggested to replicate preferentially in p53(-) and some p53(+) tumor cell lines but to be attenuated in primary cultured cells (C. Heise, A. Sampson-Johannes, A. Williams, F. McCormick, D. D. F. Hoff, and D. H. Kirn, Nat. Med. 3:639-645, 1997). It has been suggested that dl1520 might be used as a "magic bullet" that could selectively lyse tumor cells without harm to normal tissues. However, we report here that dl1520 replication is independent of p53 genotype and occurs efficiently in some primary cultured human cells, indicating that the mutant virus does not possess a tumor selectivity. Although it was not the sole host range determinant, p53 function did reduce dl1520 replication when analyzed in a cell line expressing temperature-sensitive p53 (H1299-tsp53) (K. L. Fries, W. E. Miller, and N. Raab-Traub, J. Virol. 70:8653-8659, 1996). As found earlier for other E1B-55K mutants in HeLa cells (Y. Ho, R. Galos, and J. Williams, Virology 122:109-124, 1982), dl1520 replication was temperature dependent in H1299 cells. When p53 function was restored at low temperature in H1299-tsp53 cells, it imposed a modest defect in viral DNA replication and accumulation of late viral cytoplasmic mRNA. However, in both H1299 and H1299-tsp53 cells, the defect in late viral protein synthesis appeared to be much greater than could be accounted for by the modest defects in late viral mRNA levels. We therefore propose that in addition to countering p53 function and modulating viral and cellular mRNA nuclear transport, E1B-55K also stimulates late viral mRNA translation.  相似文献   

18.
19.
20.
We have used the yeast two-hybrid system to isolate proteins that interact with the carboxy-terminal SH3-SH2-SH3 region of Vav. One of the clones encoded heterogeneous nuclear ribonucleoprotein K (hnRNP K), a poly(rC)-specific RNA-binding protein. The interaction between Vav and hnRNP K involves the binding of the most carboxy-terminal SH3 domain of Vav to two proline-rich sequences present in the central region of hnRNP K. Overexpression of Vav in mouse fibroblasts leads to the formation of a stable complex with the endogenous hnRNP K and to the preferential redistribution of this protein to the cytoplasmic fraction. More importantly, Vav and hnRNP K proteins also interact in hematopoietic cells. In addition, Vav associates in vitro with a second 45-kDa poly(rC)-specific RNA-binding protein via its SH3-SH2-SH3 region. These results suggest that Vav plays a role in the regulation of the late steps of RNA biogenesis by modulating the function of poly(rC)-specific ribonucleoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号