首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli CU1, a clinical isolate recovered in Japan in 1997, was found to be highly-resistant to both 14-membered and 16-membered ring macrolide antibiotics. A crude extract prepared from strain CU1 inactivated 14-, 15- and 16-membered ring macrolides in the presence of ATP and the Rf value of inactivated oleandomycin was identical to that of oleandomycin 2'-phosphate. This suggested that strain CU1 produced the enzyme macrolide 2'-phosphotransferase [MPH(2')]. Substrate specificity of the crude enzyme from strain CU1 against 14-, 15- and 16-membered ring macrolides was basically similar to that of MPH(2')II from strain BM2506, differing in that the former more effectively inactivated roxithromycin and tylosin. Subsequent attempts were made to clone the novel mph gene encoding for MPH(2') in strain CU1. The mph gene carried by strain CU1 was located on nontransmissible plasmid DNA, designated pCU001. Its molecular weight, estimated by agarose electrophoresis, was approximately 57 kD. The DNA sequence of the cloned mph gene from the Japanese isolate CU1 was identical to that of mphB, which until now had only been recovered in France. The variance in the substrate specificity of MPH(2')II from each strain led us to speculate that other factors in the reaction affect the enzymatic inactivation activity.  相似文献   

2.
Macrolide 2'-phosphotransferase (MPH(2')) catalyzes the transfer of the gamma-phosphate of ATP to the 2'-hydroxyl group of macrolide antibiotics. In this study, H198 and H205, conserved in the ATP-binding region motif 1 in the putative amino acid sequence of MPH(2')II, were replaced by Ala to investigate their role. H205 was also subsequently replaced by Asn. H198A and H205N mutant enzymes retained more than 50% of the specific activity of the original enzyme to substrate oleandomycin. On the other hand, the specific activity of the H205A mutant enzyme was reduced to less than 1% of that of the wild enzyme. The results suggested that H205 is crucial for maintaining the catalytic activity of MPH(2')II, and Asn can substitute for His at this position.  相似文献   

3.
We have reported that the gene mph(C) (formally referred to as 'mphBM') is located on plasmid pMS97 342 bp downstream of the msr(A) gene. msr(A) specifies resistance to macrolides by ABC-transporter-mediated efflux, and mph(C) has 49% identity to the amino acid sequence of MPH(2')II, which encodes a phosphotransferase that inactivates some macrolide antibiotics. A strain of Staphylococcus aureus NCTC8325 containing plasmid pMS97 inactivated unlabeled and (14)C-labeled erythromycin when tested by bioautographic and radioautographic techniques. In addition to erythromycin, other 14-membered ring macrolides (except for ketolides), 15-membered ring macrolides and 16-membered ring macrolides, mycinamicin, rosamicin and YM133, were inactivated by the strain. Erythromycin inactivation products produced by the strain carrying pMS97 were completely different from those produced by Escherichia coli BM694 bearing plasmid pAT63, which contains the ereA gene encoding an esterase that hydrolyzes macrolide lactones. Constructs formed with the msr(A) and mph(C) genes, and with the msr(A), mph(C) and erm(Y) genes, showed erythromycin-inactivating activity, but another construct built with the mph(C) gene alone failed to show such activity. This result suggests that any region of the msr(A) gene is needed for the expression of mph(C).  相似文献   

4.
Cell extracts of Streptomyces antibioticus, an oleandomycin producer, can inactivate oleandomycin in the presence of UDP-glucose. The inactivation can be detected through the loss of biological activity or by alteration in the chromatographic mobility of the antibiotic. This enzyme activity also inactivates other macrolides (rosaramicin, methymycin, and lankamycin) which contain a free 2'-OH group in a monosaccharide linked to the lactone ring (with the exception of erythromycin), but not those which contain a disaccharide (tylosin, spiramycin, carbomycin, josamycin, niddamycin, and relomycin). Interestingly, the culture supernatant contains another enzyme activity capable of reactivating the glycosylated oleandomycin and regenerating the biological activity through the release of a glucose molecule. It is proposed that these two enzyme activities could be an integral part of the oleandomycin biosynthetic pathway.  相似文献   

5.
Abstract Macrolide 2'-phosphotransferase II [MPH(2')II] inactivates macrolide antibiotics. The mphB gene for MPH(2')II was cloned from Escherichia coli and sequenced. Analysis of the nucleotide sequence indicated that mphB encoded a protein of 302 amino acids with a molecular mass of 34483 Da. The carboxy-terminal region of the deduced protein contained a sequence that resembled a conserved functional domain in aminoglycoside phosphotransferases.  相似文献   

6.
An erythromycin esterase (molecular mass 51200 Da) was purified from Pseudomonas sp. GD100, which was isolated from a salmon hatchery sediment sample from Washington State. The pI of the protein was 4.5-4.8. The enzyme was inhibited by 1 mM mercuric acid, and had the substrate specificity for structurally related 14-membered macrolides, which decreased in the order of oleandomycin, erythromycin A and erythromycin A enol ether. The activity for erythromycin A varied with temperature, but the effect of pH was minimal at pH 6.0-9.0. The half-life of the enzyme was estimated to be 8.9 h at 35 degrees C and 0.23 h at 55 degrees C, and the activation energy of the catalytic reaction of erythromycin A was estimated at 16.2 kJ mol(-1).  相似文献   

7.
The oleD gene has been identified in the oleandomycin producer Streptomyces antibioticus and it codes a macrolide glycosyltransferase that is able to transfer a glucose moiety from UDP-glucose (UDP-Glc) to many macrolides. The glycosyltransferase coded by the oleD gene has been purified 371-fold from a Streptomyces lividans clone expressing this protein. The reaction product was isolated, and its structure determined by NMR spectroscopy. The kinetic mechanism of the reaction was analyzed using the macrolide antibiotic lankamycin (LK) as substrate. The reaction operates via a compulsory order mechanism. This has been shown by steady-state kinetic studies and by isotopic exchange reactions at equilibrium. LK binds first to the enzyme, followed by UDP-glucose. A ternary complex is thus formed prior to transfer of glucose. UDP is then released, followed by the glycosylated lankamycin (GS-LK). A pH study of the reaction was performed to determine values for the molecular pK values, suggesting possible amino acid residues involved in the catalytic process.  相似文献   

8.
Cyclic AMP phosphodiesterase (PDE) partially purified from roots of Vigna mungo exhibited optimum activity at pH 5.5 to 6.0 and maximum enzyme activity at 50 degrees C. Levels of PDE activity in roots remained relatively constant from the first to the eleventh day after germination; on the twelfth day there was a 400% increase in PDE activity. The enzyme was stable for at least 48 hours at 28 degrees C, retaining 92% of its original activity. Plant growth hormones including gibberellic acid, indoleacetic acid and kinetin at 1.0 and 10.0 microM concentrations did not have any significant effect on enzyme activity. Nucleotides tested including cyclic 2'3' AMP, cyclic 2'3' GMP completely abolished enzyme activity at 1.0mM while cyclic 3'5' GMP, cyclic 3'5' GMP, 2'deoxy 5' ATP, 2'deoxy 5'GTP and 5'ADP were also inhibitory to the enzyme. The enzyme was stimulated by Mg2+, Fe2+ and NH4+ while Cu2+ and Fe3+ were inhibitory. Theophylline, caffeine, phosphate, pyrophosphate and EDTA were inhibitory to the enzyme.  相似文献   

9.
Antibacterial and inducer activities concerning inducible macrolide resistance in Staphylococcus aureus were investigated using 32 erythromycin, oleandomycin and other macrolide antibiotic derivatives and analogues. The macrolides were classified into five groups from very high to none according to their inducer activity.  相似文献   

10.
The spermidine-dependent, sequence-specific endoribonuclease (RNase 65) in mouse FM3A cells consists of protein and transfer RNA lacking its 3' terminus. In vitro properties of this enzyme were characterized using partially purified enzyme. The RNase 65 activity requires spermidine, which is not replaceable with spermine or Mg++. The enzyme cleaves an RNA substrate on the 3' side of the phosphodiester bond. The cleavage reaction has a temperature optimum around 50 degrees C and a pH optimum around 7.0. The optimum KCl concentration for the activity is around 10 mM. Relative cleavage efficiency of two differently folded RNA substrates with the common target sequence was analyzed at 37 degrees C and 50 degrees C. The results of this analysis suggest that unfolding of the target sequence is critical for recognition by RNase 65. Furthermore, in experiments using several point-mutated RNA substrates designed to form basically the same secondary structure as the wild type, one to three nucleotide substitutions in the target sequence all reduced cleavage efficiency. The RNase 65 activity is found only in cytosolic extracts, not in nuclear ones. Gel filtration analysis suggests that the native size of the endoribonuclease is approximately 150 kDa.  相似文献   

11.
A highly purifed preparation of rat intestinal phosphodiesterase II (oligonucleate 3'-nucleotidohydrolase, EC 3.1.4.18) has been studied using a synthetic substrate, thymidine 3'(2,4-dinitrophenyl) phosphate. The enzyme was most active between pH 6.1 and pH 6.7 and was inhibited by Cu2+ and Zn2+ but unaffected by EDTA, Mg2+, Co2+, and Ni2+. The reaction rate decreased at high levels of enzyme because of competitive inhibition by deoxythymidine 3'-phosphate, a reaction product, which showed a Ki of 2-10(-5) M. The molecular weight of the enzyme by gel-filtration was 150 000-170 000. In electrofocusing experiments multiple peaks of activity were found at pH 3.4, 4.2-4.5and 7.2. Polyacrylamide gel electrophoresis of freshly purified phosphodiesterase II showed up to 10 protein bands in the gels. If the preparations were stored at 4 degrees C for some time only one or two bands appeared. Investigation of the reaction of rat intestinal phosphodiesterase II with a number of possible phosphodiesterase substrates indicated that the enzyme required a nucleoside 3'-phosphoryl residue for the initiation of hydrolysis. Thus compounds such as NAD, ATP, bis-(p-nitrophenyl)phosphate, thymidine 5'-(p-nitrophenyl)phosphate, glycerylphosphorylcholine, guanylyl-(2' leads to 5')-adenosine and 3',5'-cyclic AMP which contain phosphodiester bonds, nevertheless were not substrates for the enzyme. The enzyme was inhibited reverisbly by p-chloromercuribenzoate and p-chloromercuriphenylsulfonate and inactivated irreversibly by iodoacetic acid. Activity of the phosphodiesterase II was reduced to 50% by incubation with 2.0-10(-3)--5.0-10(-3) M iodoacetate for 20--30 min at 24 degrees C at pH 5.0--6.1. Iodoacetamide had no effect. The degree of inactivation by iodoacetate was reduced by the presence of a substrate for the enzyme or, more effectively by deoxythymidine 3'-phosphate, a competitive inhibitor. It is concluded that iodoacetic acid alkylates an essential residue at the active centre of the enzyme.  相似文献   

12.
As much as 84% of the thermostable serine protease from Thermomonospora fusca strain YX was covalently attached to silanized glass using glutaraldehyde. The immobilized protease exhibited a higher temperature optimum (86 degrees C) and pH optimum (9.4) for activity compared to soluble YX-protease (80 degrees C and pH 9.0, respectively). Immobilization improved enzyme thermo-stability above 90 degrees C and reduced inactivation during prolonged storage (9% loss of activity after 90 days at 12 degrees C). A continuous-flow column reactor packed with immobilized protease readily hydrolyzed casein over broad ranges of temperature and pH.  相似文献   

13.
NADP+-linked isocitrate dehydrogenase (E.C.1.1.1.42) has been purified to homogeneity from germinating pea seeds. The enzyme is a tetrameric protein (mol wt, about 146,000) made up of apparently identical monomers (subunit mol wt, about 36,000). Thermal inactivation of purified enzyme at 45 degrees and 50 degrees C shows simple first order kinetics. The enzyme shows optimum activity at pH range 7.5-8. Effect of substrate [S] on enzyme activity at different pH (6.5-8) suggests that the proton behaves formally as an "uncompetitive inhibitor". A basic group of the enzyme (site) is protonated in this pH range in the presence of substrate only, with a pKa equal to 6.78. On successive dialysis against EDTA and phosphate buffer, pH 7.8 at 0 degrees C, yields an enzymatically inactive protein showing kinetics of thermal inactivation identical to the untreated (native) enzyme. Maximum enzyme activity is observed in presence of Mn2+ and Mg2+ ions (3.75 mM). Addition of Zn2+, Cd2+, Co2+ and Ca2+ ions brings about partial recovery. Other metal ions Fe2+, Cu2+ and Ni2+ are ineffective.  相似文献   

14.
Procollagen N-proteinase, the enzyme which cleaves the NH2-terminal propeptides from type I procollagen, was purified over 15,000-fold from extracts of chick embryos by chromatography on columns of DEAE-cellulose, concanavalin A-agarose, heparin-agarose, pN-collagen-agarose, and a filtration gel. The purified enzyme had an apparent molecular weight of 320,000 as estimated by gel filtration and a pH optimum for activity of 7.4 to 9.0. The enzyme was inhibited by metal chelators and the thiol reagent dithiothreitol. Addition of calcium was required for maximal activity under the standard assay conditions, and the presence of calcium decreased thermal inactivation at 37 degrees C. The purified enzyme cleaved a homotrimer of pro-alpha 1(I) chains, an observation which indicated that the presence of pro-alpha 2(I) chain is not essential for the enzymic cleavage of NH2-terminal propeptides. Previous observations suggesting that the enzyme requires a substrate with a native conformation were explored further by reacting the enzyme with type I procollagen at different temperatures. Type I procollagen from chick embryo fibroblasts became resistant to cleavage at about 43 degrees C. Type I procollagen from human skin fibroblasts, which was previously shown to have a slightly lower thermal stability than chick embryo type I procollagen, became resistant to cleavage at temperatures that were about 2 degrees C lower. The results suggested that the enzyme is a sensitive probe for the three-dimensional structure of the NH2-terminal region of the procollagen molecule and that it requires the protein substrate to be triple helical.  相似文献   

15.
Andrews KT  Patel BK  Clarke FM 《Anaerobe》1998,4(5):227-232
Restriction endonuclease activity was detected in 11 out of 13 Fervidobacterium isolates, including F. islandicum H21(T), F. gondwanense AB39(T), and nine other Fervidobacterium-like strains isolated from the Great Artesian Basin of Australia. The restriction endonuclease from F. gondwanense AB39(T) was partially purified and designated FgoI. FgoI recognized a 4 nucleotide sequence 5'-CTAG-3' and cleaved between nucleotides C and T to produce a 2 base 5' overhang (5'-C/TAG-3'). As predicted from the enzyme recognition and cleavage specificity, FgoI was found to cleave delta DNA 13 times, phiX174 three times, pBR322 five times, pUC18 four times, and pSK six times. FgoI exhibited a broad temperature optimum range (between 60 to 70 degrees C) and was active at pH 6.5 to 8.5, but not at pH 9.0. Manganese could replace magnesium as a cofactor for activity, but not cobalt chloride, calcium chloride, cupric chloride, or zinc chloride. The restriction endonuclease was completely inactivated by phenol/chloroform extraction and was heat inactivated at 80 degrees C for 60 min or at 100 degrees C for 15 min. FgoI has been identified as a heat stable isoschizomer of the Type II restriction endonucleases, MaeI and BfaI.  相似文献   

16.
甲基对硫磷水解酶参与催化相关结构的研究   总被引:1,自引:0,他引:1  
甲基对硫磷水解酶(MPH)是一种新的有机磷水解酶。将完整的甲基对硫磷水解酶基因(mpd)构建入pUC19载体,使得mpd基因以自身的启动子在Escherichia coli DH5α中表达并得到了纯化。金属螯合实验发现MPH的活性不受金属螯合剂1, 10菲NFDA1啉的影响;但用电感耦合等离子发射光谱测定其金属含量显示MPH是金属酶,1mol酶中结合了2mol的Zn2+。为确定参与MPH催化活性的必需氨基酸,用化学修饰剂碳化二亚胺、二乙基焦磷酸酯、磷酸吡哆醛和丁二酮处理MPH,然后检测其残余酶活力,结果表明天冬氨酸、谷氨酸、赖氨酸和精氨酸残基与酶的催化活性无关;而二乙基焦磷酸酯对组氨酸侧链的化学修饰引起酶活性的大幅度的下降,其对酶活性的抑制率达到9.6h-1,说明组氨酸是酶活力所必需的基团。这些结果为进一步研究酶的结构及对酶进行分子改造提供了必要的基础数据。  相似文献   

17.
An extracellular nuclease from Streptomyces thermonitrificans (designated as nuclease Stn alpha) was purified to homogeneity with an overall yield of 2.8%. The Mr of the purified enzyme was 39.6 kDa. The purified enzyme showed an exclusive requirement of Mn2+ for its activity but is not a metalloprotein. The optimum pH for ds- and ssDNA hydrolysis were 7.0 and 7.5 whereas, the optimum temperature was 40 and 45 degrees C, respectively. The enzyme was inhibited by divalent cations, inorganic phosphate and pyrophosphate but not by 3' and 5' mononucleotides. Nuclease Stn alpha is a multifunctional enzyme and its substrate specificity is in the order of dsDNA>ssDNA>RNA. The end products of both ds- and ssDNA hydrolysis were predominantly oligonucleotides (80-85%) and a small amount of 3' mononucleotides (10-15%) suggesting an endo mode of action.  相似文献   

18.
Purification and characterization of Thermus thermophilus UvrD   总被引:1,自引:0,他引:1  
The DNA helicase UvrD (helicase II) protein plays an important role in nucleotide excision repair, mismatch repair, rolling circular plasmid replication, and in DNA replication. A homologue of the Escherichia coli uvrD gene was previously identified in Thermus thermophilus; however, to date, a UvrD helicase has not been purified and characterized from a thermophile. Here we report the purification and characterization of a UvrD protein from Thermus thermophilus HB8. The purified UvrD has a temperature range from 10 degrees to >65 degrees C, with an optimum of 50 degrees C, within the temperature limits of the assay. The enzyme had a requirement for divalent metal ions and nucleoside triphosphates which related to enzyme activity in the order ATP > dATP > dGTP > GTP > CTP > dCTP > UTP. A simple real-time helicase assay was developed that should facilitate detailed kinetic studies of the enzyme. Evaluation of helicase substrates using this assay showed that the enzyme was highly active on a double-stranded DNA with 5' recessed ends in comparison with substrates with 3' recessed or blunt ends, and supports enzyme translocation in a 3'-5' direction relative to the strand bound by the enzyme.  相似文献   

19.
Syncephalastrum racemosum Cohn. produces an extracellular xylanase that was shown to potentially bleach pulp at pH 10 and 50 degrees C. The enzyme was found to be a dimer with an apparent molecular weight of 29 kDa as determined by SDS-PAGE. The optimum activity was found at two pH values 8.5 and 10.5; however the activity sharply decreased below pH 6 and above pH 10.5. The enzyme was stable for 72 h at pH 10.5 and at 50 degrees C. Kinetic experiments at 50 degrees C gave V(max) and K(m) of 1,400 U/ml min(-1) mg(-1) protein and 0.05 mg/ml respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by group II b metal ions like Zn2+, Hg2+, etc. Xylan completely protected the enzyme from being inactivated by N-bromosuccinimide.  相似文献   

20.
The proteolytic activity and thermal stability of the enzyme complex of cell suspension from pig and bovine pancreas glands was compared with those of pancreatin. The enzyme complex displayed the highest thermal stability and activity at 50 degrees C. The kinetic constants, energies of activation and inactivation of the enzyme complex, and pH optimum (7.0 +/- 0.1) at which this complex had the maximum proteolytic activity were determined. Pancreatin had a pH optimum of 8.0 +/- 0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号