首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rockey WM  Laederach A  Reilly PJ 《Proteins》2000,40(2):299-309
The Lamarckian genetic algorithm of AutoDock 3.0 was used to dock alpha-maltotriose, methyl alpha-panoside, methyl alpha-isopanoside, methyl alpha-isomaltotrioside, methyl alpha-(6(1)-alpha-glucopyranosyl)-maltoside, and alpha-maltopentaose into the closed and, except for alpha-maltopentaose, into the open conformation of the soybean beta-amylase active site. In the closed conformation, the hinged flap at the mouth of the active site closes over the substrate. The nonreducing end of alpha-maltotriose docks preferentially to subsites -2 or +1, the latter yielding nonproductive binding. Some ligands dock into less optimal conformations with the nonreducing end at subsite -1. The reducing-end glucosyl residue of nonproductively-bound alpha-maltotriose is close to residue Gln194, which likely contributes to binding to subsite +3. In the open conformation, the substrate hydrogen-bonds with several residues of the open flap. When the flap closes, the substrate productively docks if the nonreducing end is near subsites -2 or -1. Trisaccharides with alpha-(1-->6) bonds do not successfully dock except for methyl alpha-isopanoside, whose first and second glucosyl rings dock exceptionally well into subsites -2 and -1. The alpha-(1-->6) bond between the second and third glucosyl units causes the latter to be improperly positioned into subsite +1; the fact that isopanose is not a substrate of beta-amylase indicates that binding to this subsite is critical for hydrolysis.  相似文献   

2.
The crystal structures of beta-amylase from Bacillus cereus var. mycoides in complexes with five inhibitors were solved. The inhibitors used were three substrate analogs, i.e. glucose, maltose (product), and a synthesized compound, O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-D-xylopyranose (GGX), and two affinity-labeling reagents with an epoxy alkyl group at the reducing end of glucose. For all inhibitors, one molecule was bound at the active site cleft and the non-reducing end glucose of the four inhibitors except GGX was located at subsite 1, accompanied by a large conformational change of the flexible loop (residues 93-97), which covered the bound inhibitor. In addition, another molecule of maltose or GGX was bound about 30 A away from the active site. A large movement of residues 330 and 331 around subsite 3 was also observed upon the binding of GGX at subsites 3 to 5. Two affinity-labeling reagents, alpha-EPG and alpha-EBG, were covalently bound to a catalytic residue (Glu-172). A substrate recognition mechanism for the beta-amylase was discussed based on the modes of binding of these inhibitors in the active site cleft.  相似文献   

3.
Cellooligosaccharides were computationally docked using AutoDock into the active sites of the glycoside hydrolase Family 6 enzymes Hypocrea jecorina (formerly Trichoderma reesei) cellobiohydrolase and Thermobifida fusca endoglucanase. Subsite -2 exerts the greatest intermolecular energy in binding beta-glucosyl residues, with energies progressively decreasing to either side. Cumulative forces imparting processivity exerted by these two enzymes are significantly less than by the equivalent glycoside hydrolase Family 7 enzymes studied previously. Putative subsites -4, -3, +3, and +4 exist in H. jecorina cellobiohydrolase, along with putative subsites -4, -3, and +3 in T. fusca endoglucanase, but they are less important than subsites -2, -1, +1, and +2. In general, binding adds 3-7 kcal/mol to ligand intramolecular energies because of twisting of scissile glycosidic bonds. Distortion of beta-glucosyl residues to the (2)S(O) conformation by binding in subsite -1 adds approximately 7 kcal/mol to substrate intramolecular energies.  相似文献   

4.
Tóth G  Borics A 《Biochemistry》2006,45(21):6606-6614
The active site of aspartic proteases is covered by one or more flaps, which control access to the active site and play a significant role in the binding of the substrate. An extensive conformational change of the flaps takes place upon binding of substrate to the active site. A long molecular dynamics simulation was performed on the complex consisting of a peptide (CA-p2) from a natural substrate cleavage site of the gag/pol polyprotein placed in the active site of HIV-1 protease (PR) with an open flap conformation. During the simulation, the substrate induced the closing of the flaps into the closed conformation in an asymmetrical way through a hydrophobic intermediate state cluster. The nature of the residues of HIV-1 PR identified to be important in the flap closing mechanism is conserved across known structures of retroviral aspartic proteases family. The flap closing mechanism described in HIV-1 PR is proposed to be a general model for flap closing in retroviral aspartic proteases.  相似文献   

5.
GH 11 (glycoside hydrolase family 11) xylanases are predominant enzymes in the hydrolysis of heteroxylan, an abundant structural polysaccharide in the plant cell wall. To gain more insight into the protein-ligand interactions of the glycone as well as the aglycone subsites of these enzymes, catalytically incompetent mutants of the Bacillus subtilis and Aspergillus niger xylanases were crystallized, soaked with xylo-oligosaccharides and subjected to X-ray analysis. For both xylanases, there was clear density for xylose residues in the -1 and -2 subsites. In addition, for the B. subtilis xylanase, there was also density for xylose residues in the -3 and +1 subsite showing the spanning of the -1/+1 subsites. These results, together with the observation that some residues in the aglycone subsites clearly adopt a different conformation upon substrate binding, allowed us to identify the residues important for substrate binding in the aglycone subsites. In addition to substrate binding in the active site of the enzymes, the existence of an unproductive second ligand-binding site located on the surface of both the B. subtilis and A. niger xylanases was observed. This extra binding site may have a function similar to the separate carbohydrate-binding modules of other glycoside hydrolase families.  相似文献   

6.
The X-ray crystal structure of a catalytic site mutant of beta-amylase, E172A (Glu172 --> Ala), from Bacillus cereus var. mycoides complexed with a substrate, maltopentaose (G5), and the wild-type enzyme complexed with maltose were determined at 2.1 and 2.0 A resolution, respectively. Clear and continuous density corresponding to G5 was observed in the active site of E172A, and thus, the substrate, G5, was not hydrolyzed. All glucose residues adopted a relaxed (4)C(1) conformation, and the conformation of the maltose unit for Glc2 and Glc3 was much different from those of other maltose units, where each glucose residue of G5 is named Glc1-Glc5 (Glc1 is at the nonreducing end). A water molecule was observed 3.3 A from the C1 atom of Glc2, and 3.0 A apart from the OE1 atom of Glu367 which acts as a general base. In the wild-type enzyme-maltose complex, two maltose molecules bind at subsites -2 and -1 and at subsites +1 and +2 in tandem. The conformation of the maltose molecules was similar to that of the condensation product of soybean beta-amylase, but differed from that of G5 in E172A. When the substrate flips between Glc2 and Glc3, the conformational energy of the maltose unit was calculated to be 20 kcal/mol higher than that of the cis conformation by MM3. We suggest that beta-amylase destabilizes the bond that is to be broken in the ES complex, decreasing the activation energy, DeltaG(++), which is the difference in free energy between this state and the transition state.  相似文献   

7.
Choi JK  Lee BH  Chae CH  Shin W 《Proteins》2004,55(1):22-33
The structure of a pectin-bound complex of rhamnogalacturonase was modeled to identify the amino acid residues involved in catalysis and substrate binding. The "hairy" region of pectin, represented by six repeating stretches of (1-->4)-D-galacturonate-(1-->2)-L-rhamnose dimer, was flexibly docked into the putative binding site of rhamnogalacturonase from Aspergillus aculeatus whose X-ray structure is known. A search of the complex configurational space was performed using AutoDock for the dimeric and tetrameric sugar units in which the -1 galacturonate residue has various ring conformations. Then the plausible AutoDock solutions were manually extended to the dodecameric pectin models. Subsequently, the resulting complex models were subjected to solvated molecular dynamics using AMBER. In the best model, the substrate has an extended pseudo-threefold helix with the -1 ring in a 4H3 half-chair that approaches the transition state conformation. The catalytic machinery is clearly defined: Asp197 is a general acid and the activated water bound between Asp177 and Glu198 is a nucleophile. The active site is similar, with a small yet significant difference, to that of polygalacturonase that degrades the pectic "smooth" region of linear homopolymer of D-(1-->4)-linked galacturonic acid. Rhamnogalacturonase has ten binding subsites ranging from -3 to +7, while polygalacturonase has eight subsites from -5 to +3. The model suggests that the eight amino acids including three arginine and three lysine residues, all of which are invariantly conserved in the rhamnogalacturonase family of proteins, are important in substrate binding. The present study may aid in designing mutational studies to characterize rhamnogalacturonase.  相似文献   

8.
The three-dimensional structure of the Bacillus stearothermophilus "maltogenic" alpha-amylase, Novamyl, has been determined by X-ray crystallography at a resolution of 1.7 A. Unlike conventional alpha-amylases from glycoside hydrolase family 13, Novamyl exhibits the five-domain structure more usually associated with cyclodextrin glycosyltransferase. Complexes of the enzyme with both maltose and the inhibitor acarbose have been characterized. In the maltose complex, two molecules of maltose are found in the -1 to -2 and +2 to +3 subsites of the active site, with two more on the C and E domains. The C-domain maltose occupies a position identical to one previously observed in the Bacillus circulans CGTase structure [Lawson, C. L., et al. (1994) J. Mol. Biol. 236, 590-600], suggesting that the C-domain plays a genuine biological role in saccharide binding. In the acarbose-maltose complex, the tetrasaccharide inhibitor acarbose is found as an extended hexasaccharide species, bound in the -3 to +3 subsites. The transition state mimicking pseudosaccharide is bound in the -1 subsite of the enzyme in a 2H3 half-chair conformation, as expected. The active site of Novamyl lies in an open gully, fully consistent with its ability to perform internal cleavage via an endo as opposed to an exo activity.  相似文献   

9.
In view of the complexity of the role of the active site flap cysteine in the urease catalysis, in this work we studied how the presence of typical active-site binding inhibitors of urease, phenylphosphorodiamidate (PPD), acetohydroxamic acid (AHA), boric acid and fluoride, affects the reactivity of enzyme thiol groups, the active site flap thiol in particular. For that the inhibitor-urease complexes were prepared with excess inhibitors and had their thiol groups titrated with DTNB. The effects observed were analyzed in terms of the structures of the inhibitor-urease complexes reported in the literature. We found that the effectiveness in preventing the active site cysteine from the modification by disulfides, varied among the inhibitors studied, even though they all bind to the active site. The variations were accounted for by different extents of geometrical distortion in the active site that the inhibitors introduced upon binding, leaving the flap either open in AHA-, boric acid- and fluoride-inhibited urease, like in the native enzyme or closed in PPD-inhibited urease. Among the inhibitors, only PPD was found to be able to thoroughly protect the flap cysteines from the further reaction with disulfides, this apparently resulting from the closed conformation of the flap. Accordingly, in practical terms PPD may be regarded as the most suitable inhibitor for active-site protection experiments in inhibition studies of urease.  相似文献   

10.
The structure of pig pancreatic alpha-amylase in complex with carbohydrate inhibitor and proteinaceous inhibitors is known but the successive events occurring at the catalytic center still remain to be elucidated. The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) soaked with an enzyme-resistant substrate analogue, methyl 4,4'-dithio-alpha-maltotrioside, showed electron density corresponding to the binding of substrate analogue molecules at the active site and at the "second binding site." The electron density observed at the active site was interpreted in terms of overlapping networks of oligosaccharides, which show binding of substrate analogue molecules at subsites prior to and subsequent to the cleavage site. A weaker patch of density observed at subsite -1 (using a nomenclature where the site of hydrolysis is taken to be between subsites -1 and +1) was modeled with water molecules. Conformational changes take place upon substrate analogue binding and the "flexible loop" that constitutes the surface edge of the active site is observed in a specific conformation. This confirms that this loop plays an important role in the recognition and binding of the ligand. The crystal structure was refined at 2.03 A resolution, to an R-factor of 16.0 (Rfree, 18.5).  相似文献   

11.
Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (Fsbeta-glucanase) catalyzes the specific hydrolysis of beta-1,4 glycosidic bonds adjacent to beta-1,3 linkages in beta-D-glucans or lichenan. This is the first report to elucidate the crystal structure of a truncated Fsbeta-glucanase (TFsbeta-glucanase) in complex with beta-1,3-1,4-cellotriose, a major product of the enzyme reaction. The crystal structures, at a resolution of 2.3 angstroms, reveal that the overall fold of TFsbeta-glucanase remains virtually unchanged upon sugar binding. The enzyme accommodates five glucose residues, forming a concave active cleft. The beta-1,3-1,4-cellotriose with subsites -3 to -1 bound to the active cleft of TFsbeta-glucanase with its reducing end subsite -1 close to the key catalytic residues Glu56 and Glu60. All three subsites of the beta-1,3-1,4-cellotriose adopted a relaxed C(1)4 conformation, with a beta-1,3 glycosidic linkage between subsites -2 and -1, and a beta-1,4 glycosidic linkage between subsites -3 and -2. On the basis of the enzyme-product complex structure observed in this study, a catalytic mechanism and substrate binding conformation of the active site of TFsbeta-glucanase is proposed.  相似文献   

12.
We report a multifaceted study of the active site region of human pancreatic alpha-amylase. Through a series of novel kinetic analyses using malto-oligosaccharides and malto-oligosaccharyl fluorides, an overall cleavage action pattern for this enzyme has been developed. The preferred binding/cleavage mode occurs when a maltose residue serves as the leaving group (aglycone sites +1 and +2) and there are three sugars in the glycon (-1, -2, -3) sites. Overall it appears that five binding subsites span the active site, although an additional glycon subsite appears to be a significant factor in the binding of longer substrates. Kinetic parameters for the cleavage of substrates modified at the 2 and 4' ' positions also highlight the importance of these hydroxyl groups for catalysis and identify the rate-determining step. Further kinetic and structural studies pinpoint Asp197 as being the likely nucleophile in catalysis, with substitution of this residue leading to an approximately 10(6)-fold drop in catalytic activity. Structural studies show that the original pseudo-tetrasaccharide structure of acarbose is modified upon binding, presumably through a series of hydrolysis and transglycosylation reactions. The end result is a pseudo-pentasaccharide moiety that spans the active site region with its N-linked "glycosidic" bond positioned at the normal site of cleavage. Interestingly, the side chains of Glu233 and Asp300, along with a water molecule, are aligned about the inhibitor N-linked glycosidic bond in a manner suggesting that these might act individually or collectively in the role of acid/base catalyst in the reaction mechanism. Indeed, kinetic analyses show that substitution of the side chains of either Glu233 or Asp300 leads to as much as a approximately 10(3)-fold decrease in catalytic activity. Structural analyses of the Asp300Asn variant of human pancreatic alpha-amylase and its complex with acarbose clearly demonstrate the importance of Asp300 to the mode of inhibitor binding.  相似文献   

13.
We describe enzymological and structural analyses of the interaction between the family 18 chitinase ChiB from Serratia marcescens and the designed inhibitor N,N'-diacetylchitobionoxime-N-phenylcarbamate (HM508). HM508 acts as a competitive inhibitor of this enzyme with a K(i) in the 50 microM range. Active site mutants of ChiB show K(i) values ranging from 1 to 200 microM, providing insight into some of the interactions that determine inhibitor affinity. Interestingly, the wild type enzyme slowly degrades HM508, but the inhibitor is essentially stable in the presence of the moderately active D142N mutant of ChiB. The crystal structure of the D142N-HM508 complex revealed that the two sugar moieties bind to the -2 and -1 subsites, whereas the phenyl group interacts with aromatic side chains that line the +1 and +2 subsites. Enzymatic degradation of HM508, as well as a Trp --> Ala mutation in the +2 subsite of ChiB, led to reduced affinity for the inhibitor, showing that interactions between the phenyl group and the enzyme contribute to binding. Interestingly, a complex of enzymatically degraded HM508 with the wild type enzyme showed a chitobiono-delta-lactone bound in the -2 and -1 subsites, despite the fact that the equilibrium between the lactone and the hydroxy acid forms in solution lies far toward the latter. This shows that the active site preferentially binds the (4)E conformation of the -1 sugar, which resembles the proposed transition state of the reaction.  相似文献   

14.
The escape mutant of HIV-1 protease (PR) containing 20 mutations (PR20) undergoes efficient polyprotein processing even in the presence of clinical protease inhibitors (PIs). PR20 shows >3 orders of magnitude decreased affinity for PIs darunavir (DRV) and saquinavir (SQV) relative to PR. Crystal structures of PR20 crystallized with yttrium, substrate analogue p2-NC, DRV, and SQV reveal three distinct conformations of the flexible flaps and diminished interactions with inhibitors through the combination of multiple mutations. PR20 with yttrium at the active site exhibits widely separated flaps lacking the usual intersubunit contacts seen in other inhibitor-free dimers. Mutations of residues 35-37 in the hinge loop eliminate interactions and perturb the flap conformation. Crystals of PR20/p2-NC contain one uninhibited dimer with one very open flap and one closed flap and a second inhibitor-bound dimer in the closed form showing six fewer hydrogen bonds with the substrate analogue relative to wild-type PR. PR20 complexes with PIs exhibit expanded S2/S2' pockets and fewer PI interactions arising from coordinated effects of mutations throughout the structure, in agreement with the strikingly reduced affinity. In particular, insertion of the large aromatic side chains of L10F and L33F alters intersubunit interactions and widens the PI binding site through a network of hydrophobic contacts. The two very open conformations of PR20 as well as the expanded binding site of the inhibitor-bound closed form suggest possible approaches for modifying inhibitors to target extreme drug-resistant HIV.  相似文献   

15.
The stacking interaction between a tyrosine residue and the sugar ring at the catalytic subsite -1 is strictly conserved in the glycoside hydrolase family 13 enzymes. Replacing Tyr100 with leucine in cyclodextrin glycosyltransferase (CGTase) from Bacillus sp. 1011 to prevent stacking significantly decreased all CGTase activities. The adjacent stacking interaction with both Phe183 and Phe259 onto the sugar ring at subsite +2 is essentially conserved among CGTases. F183L/F259L mutant CGTase affects donor substrate binding and/or acceptor binding during transglycosylation [Nakamura et al. (1994) Biochemistry 33, 9929-9936]. To elucidate the precise role of carbohydrate/aromatic stacking interaction at subsites -1 and +2 on the substrate binding of CGTases, we analyzed the X-ray structures of wild-type (2.0 A resolution), and Y100L (2.2 A resolution) and F183L/F259L mutant (1.9 A resolution) CGTases complexed with the inhibitor, acarbose. The refined structures revealed that acarbose molecules bound to the Y100L mutant moved from the active center toward the side chain of Tyr195, and the hydrogen bonding and hydrophobic interaction between acarbose and subsites significantly diminished. The position of pseudo-tetrasaccharide binding in the F183L/F259L mutant was closer to the non-reducing end, and the torsion angles of glycosidic linkages at subsites -1 to +1 on molecule 1 and subsites -2 to -1 on molecule 2 significantly changed compared with that of each molecule of wild-type-acarbose complex to adopt the structural change of subsite +2. These structural and biochemical data suggest that substrate binding in the active site of CGTase is critically affected by the carbohydrate/aromatic stacking interaction with Tyr100 at the catalytic subsite -1 and that this effect is likely a result of cooperation between Tyr100 and Phe259 through stacking interaction with substrate at subsite +2.  相似文献   

16.
Oligosaccharide binding to barley alpha-amylase 1   总被引:1,自引:0,他引:1  
Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough insight into the substrate binding by describing residues defining 9 subsites, namely -7 through +2. These structures support that the pseudotetrasaccharide inhibitor acarbose is hydrolyzed by the active enzymes. Moreover, sugar binding was observed to the starch granule-binding site previously determined in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site was proposed at the glycone part of the binding cleft, and the crystal structures of the catalytic nucleophile mutant (AMY1D180A) complexed with acarbose and maltoheptaose, respectively, suggest an additional role for the nucleophile in the stabilization of the Michaelis complex. Furthermore, probable roles are outlined for the surface binding sites. Our data support a model in which the two surface sites in AMY1 can interact with amylose chains in their naturally folded form. Because of the specificities of these two sites, they may locate/orient the enzyme in order to facilitate access to the active site for polysaccharide chains. Moreover, the sugar tongs surface site could also perform the unraveling of amylose chains, with the aid of Tyr-380 acting as "molecular tweezers."  相似文献   

17.
Integrin alpha(1)beta(1) is one of four collagen-binding integrins in humans. Collagens bind to the alphaI domain and in the case of alpha(2)I collagen binding is competitively inhibited by peptides containing the RKKH sequence and derived from the metalloproteinase jararhagin of snake venom from Bothrops jararaca. In alpha(2)I, these peptides bind near the metal ion-dependent adhesion site (MIDAS), where a collagen (I)-like peptide is known to bind; magnesium is required for binding. Published structures of the ligand-bound "open" conformation of alpha(2)I differs significantly from the "closed" conformation seen in the structure of apo-alpha(2)I near MIDAS. Here we show that two peptides, CTRKKHDC and CARKKHDC, derived from jararhagin also bind to alpha(1)I and competitively inhibit collagen I binding. Furthermore, calorimetric and fluorimetric measurements show that the structure of the complex of alpha(1)I with Mg(2+) and CTRKKHDC differs from structure in the absence of peptide. A comparison of the x-ray structure of apo-alpha(1)I ("closed" conformation) and a model structure of the alpha(1)I ("open" conformation) based on the closely related structure of alpha(2)I reveals that the binding site is partially blocked to ligands by Glu(255) and Tyr(285) in the "closed" structure, whereas in the "open" structure helix C is unwound and these residues are shifted, and the "RKKH" peptides fit well when docked. The "open" conformation of alpha(2)I resulting from binding a collagen (I)-like peptide leads to exposure of hydrophobic surface, also seen in the model of alpha(1)I and shown experimentally for alpha(1)I using a fluorescent hydrophobic probe.  相似文献   

18.
Enzymatic properties of barley alpha-amylase 1 (AMY1) are altered as a result of amino acid substitutions at subsites -5/-6 (Cys95-->Ala/Thr) and +1/+2 (Met298-->Ala/Asn/Ser) as well as in the double mutants, Cys95-->Ala/Met298-->Ala/Asn/Ser. Cys95-->Ala shows 176% activity towards insoluble Blue Starch compared to wild-type AMY1, kcat of 142 and 211% towards amylose DP17 and 2-chloro-4-nitrophenyl beta-d-maltoheptaoside (Cl-PNPG7), respectively, but fivefold to 20-fold higher Km. The Cys95-->Thr-AMY1 AMY2 isozyme mimic exhibits the intermediary behaviour of Cys95-->Ala and wild-type. Met298-->Ala/Asn/Ser have slightly higher to slightly lower activity for starch and amylose, whereas kcat and kcat/Km for Cl-PNPG7 are < or = 30% and < or = 10% of wild-type, respectively. The activity of Cys95-->Ala/Met298-->Ala/Asn/Ser is 100-180% towards starch, and the kcat/Km is 15-30%, and 0.4-1.1% towards amylose and Cl-PNPG7, respectively, emphasizing the strong impact of the Cys95-->Ala mutation on activity. The mutants therefore prefer the longer substrates and the specificity ratios of starch/Cl-PNPG7 and amylose/Cl-PNPG7 are 2.8- to 270-fold and 1.2- to 60-fold larger, respectively, than of wild-type. Bond cleavage analyses show that Cys95 and Met298 mutations weaken malto-oligosaccharide binding near subsites -5 and +2, respectively. In the crystal structure Met298 CE and SD (i.e., the side chain methyl group and sulfur atom) are near C(6) and O(6) of the rings of the inhibitor acarbose at subsites +1 and +2, respectively, and Met298 mutants prefer amylose for glycogen, which is hydrolysed with a slightly lower activity than by wild-type. Met298 AMY1 mutants and wild-type release glucose from the nonreducing end of the main-chain of 6"'-maltotriosyl-maltohexaose thus covering subsites -1 to +5, while productive binding of unbranched substrate involves subsites -3 to +3.  相似文献   

19.
The patch-clamp technique was used to characterize the mechanism of Ca2+-induced inactivation of cardiac L-type Ca2+ channel alpha(1C-a) + beta3 subunits stably expressed in CHO cells. Single Ca2+ channel activity was monitored with 96 mM Ba2+ as charge carrier in the presence of 2.5 microM (-)BAYK 8644 and calpastatin plus ATP. This enabled stabilization of channel activity in the inside-out patch and allowed for application of steady-state Ca2+ concentrations to the intracellular face of excised membrane patches in an attempt to provoke Ca2+-induced inactivation. Inactivation was found to occur specifically with Ca2+ since it was not observed upon application of Ba2+. Ca2+-dependent inhibition of mean Ca2+ channel activity was characterized by a Hill coefficient close to 1. Ca2+ binding to open and closed states of the channel obtained during depolarization apparently occurred with similar affinity yielding half-maximal inhibition of Ca2+ channel activity at approximately 4 microM. This inhibition manifested predominantly in a reduction of the channel's open probability whereas availability remained almost unchanged. The reduction in open probability was achieved by an increase in first latencies and a decrease in channel opening frequency as well as channel open times. At high (12-28 microM) Ca2+ concentrations, 72% of inhibition occurred due to a stabilization of the closed state and the remaining 28% by a destabilization of the open state. Our results suggest that binding of one calcium ion to a regulatory domain induces a complex alteration in the kinetic properties of the Ca2+ channel and support the idea of a single EF hand motif as the relevant Ca2+ binding site on the alpha1 subunit.  相似文献   

20.
Benzothiazepines 1-3 inhibited acetylcholinesterase (AChE; EC 3.1.1.7) enzyme in a concentration-dependent fashion with IC(50) values of 1.0 +/- 0.002, 1.2 +/- 0.005 and 1.3 +/- 0.001 microM, respectively. By using linear-regression equations, Lineweaver-Burk, Dixon plots and their secondary replots were constructed which indicated that compounds 1-3 are non-competitive inhibitors of AChE with K(i) values of 0.8 +/- 0.04, 1.1 +/- 0.002, and 1.5 +/- 0.001 microM, respectively. Molecular docking studies revealed that all the compounds are completely buried inside the aromatic gorge of AChE, extending deep into the gorge of AChE. A comparison of the docking results of compounds 1-3 displayed that these compounds generally adopt the same binding mode in the active site of AChE. The superposition of the docked structures demonstrated that the non-flexible benzothiazepine always penetrate into the aromatic gorge through the six-membered ring A, which allowed the ligands to interact simultaneously with more than one subsites of the active center of AChE. The higher AChE inhibitory potential of compounds 1-3 was found to be the cumulative effect of hydrophobic contacts and pi-pi interactions between the ligands and AChE. The relatively high affinity of benzothiazepine 1 with AChE was found to be due to additional hydrogen bond in benzothiazepine 1-AChE complex. The results indicated that substitution of halogen and methyl groups by hydrogen at aromatic ring of the benzothiazepine decreased the affinity of these molecules towards enzyme that may be due to the polar non-polar repulsions of these moieties with the amino acid residues in the active site of AChE. The observed binding modes of benzothiazepines 1-3 in the active site of AChE explain the affinities of benzothiazepines and provide a rational basis for the structure-based drug design of benzothiazepines with improved pharmacological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号