首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gonadotropin-releasing hormone (GnRH) acts directly on the ovary to induce ovulation in hypophysectomized proestrous rats. Because plasminogen activators (PAs) are implicated in gonadotropin-induced ovulation, we have studied the effect of GnRH on ovarian PA synthesis. GnRH induced tissue-type PA (tPA) secretion by cultured rat granulosa cells, but inhibited the secretion of urokinase-type PA. These effects were blocked by co-treatment with a GnRH antagonist, suggesting that stereospecific GnRH receptors are involved. Follicle-stimulating hormone (FSH) also induced tPA in granulosa cells but with a different time course than GnRH; the combined effect of FSH and GnRH was additive. The GnRH effect was mimicked by the calcium- and phospholipid-dependent protein kinase C activator, phorbol myristate acetate. In isolated cumulus-oocyte complexes and cumulus cells, GnRH treatment also increased tPA activity. In contrast, treatment of denuded oocytes with GnRH did not increase enzyme activity. After GnRH stimulation of the cumulus-oocyte complexes, tPA content in the denuded oocyte was elevated, suggesting that the cumulus cells mediate the action of GnRH to increase the oocyte enzyme levels. Hybridization experiments using a labeled rat tPA-specific DNA probe showed that both FSH and GnRH increased the level of tPA mRNA in cultured granulosa cells; the stimulatory effect of GnRH was blocked by the GnRH antagonist. Our results indicate that GnRH treatment increases tPA secretion by cultured granulosa cells and cumulus-oocyte complexes. The stimulation of enzyme activity in the granulosa cells is accompanied by increases in tPA mRNA levels.  相似文献   

2.
Mononuclear phagocytes regulate the generation of plasmin by secreting urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-2 (PAI-2). We investigated the production of plasminogen activator (PA) and PA inhibitor by the human monocytic leukemia cell line, THP-1. Similar to U937 monoblast-like cells and peripheral blood monocytes (PBM), THP-1 cells produce a PA that is specifically neutralized by anti-uPA antibody and comigrates with human high molecular mass uPA (54 kDa) on casein-plasminogen zymogaphy. PA activity could be dissociated from intact THP-1 cells by brief treatment with a weak acid-glycine buffer, indicating that the uPA is secreted and bound to receptors on the plasma membrane. Regulation of uPA proceeds normally in THP-1 cells, with cell-associated PA activity increasing from 77 +/- 20 to 163 +/- 26 and 325 +/- 30 mPU/10(6) cells in response to PMA and LPS, respectively; parallel increases in steady state levels of uPA mRNA were observed. In contrast to normal expression of uPA activity, functional PAI-2 could not be demonstrated in either the conditioned media or cell lysates of THP-1 under basal or stimulated conditions. Both U937 and PBM secrete low levels of PA inhibitor activity that increase substantially in response to stimulation with PMA and LPS. Immunoreactive PAI-2, measured by ELISA, was undetectable in THP-1 lysates or conditioned medium, but was consistently present in U937 and PBM, paralleling the presence of PA inhibitor activity. THP-1 cells express low levels of an abnormally sized mRNA for PAI-2 and demonstrate a regulatory defect whereby steady state levels of PAI-2 mRNA are markedly reduced upon stimulation with PMA or LPS. By contrast, U937 and PBM respond to identical stimulation with increases in PAI-2 mRNA. We conclude that THP-1 cells express a structurally abnormal species of PAI-2 mRNA, with complete loss of inhibitory activity as well as altered function of PMA- and LPS-responsive regulatory elements.  相似文献   

3.
4.
Phorbol myristate acetate (PMA) added to human synovial fibroblast cultures caused a dose-dependent increase in the production of plasminogen activator inhibitor-type 1 (PAI-1). In addition, PMA inhibited endogenous and interleukin-1 (IL-1) induced plasminogen activator (PA) activity, while increasing mRNA PAI-1 levels. Other protein kinase C (PKC) activators, mezerein and teleocidin B4, caused similar effects. The simultaneous addition of the PKC antagonists, H-7 or staurosporine, prevented the inhibition of PA activity by PMA. This study shows that activation of PKC inhibits PA and stimulates PAI production in human synovial fibroblasts. These results suggest that activation of PKC may play an important role in regulating increased PA production associated with joint destruction in rheumatoid arthritis (RA).  相似文献   

5.
Plasminogen activators (PAs) have been shown to be synthesized in ovarian follicles of several mammalian species, where they contribute to the ovulation process. The type of PA secreted by granulosa cells is species-specific. In fact, whereas in the rat, gonadotropins stimulate tissue-type PA (tPA) production, the same hormonal stimulation induces urokinase PA (uPA) secretion in mouse cells. To investigate in more detail the hormonal regulation of this system, we used the rat ovary as a model in which we analyzed the production of PAs by theca-interstitial (TI) and granulosa cells obtained from preovulatory follicles after gonadotropin stimulation. In untreated rats, uPA was the predominant enzyme in both TI and granulosa cells. After hormonal stimulation, an increase in uPA and tPA activity was observed in both cell types. Surprisingly, only tPA mRNA increased in a time-dependent manner in both cell types, while uPA mRNA increased only in TI cells and actually decreased in granulosa cells. These divergent results between uPA enzyme activity and mRNA levels in granulosa cells were explained by studying the localization of the enzyme. Analysis of granulosa cell lysates showed that after hormonal stimulation, 60-70% of the uPA behaved as a cell-associated protein, suggesting that uPA, already present in the follicle, accumulates on the granulosa cell surface through binding to specific uPA receptors. The redistribution of uPA in granulosa cells and the differing regulation of the two PAs by gonadotropins in the rat ovary suggest that the two enzymes might have different functions during the ovulation process. Moreover, the ability of antibodies anti-tPA and anti-uPA to significantly inhibit ovulation only when coinjected with hCG confirmed that the PA contribution to ovulation occurs at the initial steps.  相似文献   

6.
The effects of the tumor promoter phorbol 12-myristate 13-acetate (PMA) on the proliferation, protein kinase C activity (PKC), and c-fos gene expression were examined in cultures of young and senescent (90-95% lifespan completed) WI-38 human diploid fibroblasts. We observed that, following stimulation with medium containing 10% fetal bovine serum (FBS), the translocation of PKC from the cytosol to the particulate compartment was less efficient in senescent WI-38 cells than in young cells. However, when PMA was added to the medium, the intracellular distribution of PKC activity in old cells became nearly identical to that observed in young cells. The inducibility of c-fos mRNA by serum addition, which is a protein kinase C-dependent event [64], was significantly amplified in the presence of PMA. Moreover, the duration of peak c-fos expression, after stimulation by FBS and PMA, increased in senescent cells as compared to young cells. Our results reveal that the normal signal transduction pathway is altered in senescent, slowly proliferating human fibroblasts and that it can be partially restored in the presence of the tumor promoter PMA.  相似文献   

7.
Tumor-promoting phorbol esters stimulate tissue plasminogen activator (tPA) release from human endothelial cells, and simultaneous elevation of cyclic AMP potentiates this response 5-fold (Santell, L., and Levin, E. G. (1988) J. Biol. Chem. 263, 16802-16808). A similar effect on tPA mRNA was observed, with phorbol myristate acetate inducing a 3.5-fold increase in steady state tPA mRNA levels and forskolin enhancing that increase to 25-fold. Peak levels occurred at 8 h after agonist addition and returned to baseline levels by 16 h. As was found with tPA antigen secretion, delayed addition of forskolin reduced the level of potentiation, and, at 6 h after phorbol 12-myristate 13-acetate (PMA), forskolin was no longer effective. The protein synthesis inhibitor cycloheximide did not inhibit the rise in tPA mRNA levels in response to PMA/forskolin nor the decline in mRNA levels between 8 and 12 h. However, peak levels (8 h) were approximately 1.5-fold higher than in cultures not treated with cycloheximide. The effect of two inhibitors of protein kinases, H-7 and staurosporine, on PMA-induced tPA antigen secretion and tPA mRNA levels were examined. H-7 and staurosporine inhibited PMA, and PMA/forskolin induced tPA secretion in a dose-dependent manner. This effect was time-dependent; the inhibitory effect was reduced with delayed H-7 addition, and, by 6 h after PMA treatment, no inhibition was observed. H-7 and staurosporine also inhibited the PMA/forskolin-induced increase in tPA mRNA levels and were less effective the later they were added. The same time-dependent effect on the potentiation of PMA-induced tPA mRNA levels by forskolin was observed. Again, delayed addition reduced the effect, and, by 6 h, potentiation was absent. The results of this study indicate that changes in mRNA levels in response to PMA and PMA/forskolin precede and determine those that occur to tPA antigen secretion. In addition, the maximal response is dependent upon the prolonged activation of an H-7- and cAMP-sensitive pathway.  相似文献   

8.
During ovarian follicle growth, there is expansion of the basal lamina and changes in the follicular extracellular matrix (ECM) that are mediated in part by proteolytic enzyme cascades regulated by tissue-type plasminogen activator (tPA) and urokinase plasminogen activator (uPA). One PA inhibitor, serine protease inhibitor-E2 (SERPINE2) is expressed in granulosa but not theca cells, and expression changes with follicle development. In this study, we hypothesized that PA and SERPINE2 expression/secretion by granulosa cells are regulated by FSH and growth factors. SERPINE2 mRNA and protein levels, tPA gene expression and uPA secretion were stimulated by FSH. Insulin-like growth factor-I stimulated SERPINE2 secretion and uPA activity, and decreased secreted tPA activity and gene expression. Bone morphogenetic protein-7 increased SERPINE2 secretion and expression and tPA secretion. In contrast, fibroblast growth factor-2 inhibited tPA secretion and SERPINE2 secretion and expression. Epidermal growth factor inhibited SERPINE2 secretion and expression, but increased secreted tPA activity. Estradiol and SERPINE2 secretion were highly positively correlated, but estradiol did not alter SERPINE2 expression. These data demonstrate that SERPINE2 expression and protein secretion are regulated by FSH and growth factors in non-luteinizing bovine granulosa cells. As estradiol is a known marker of follicle health, and SERPINE2 is an anti-apoptotic factor, we propose that SERPINE2 is involved in the regulation of atresia in bovine follicles.  相似文献   

9.
10.
在人肝癌细胞7721中研究了酪氨酸蛋白激酶(TPK)和蛋白激酶C(PKC)的激活剂[分别为表皮生长因子(EGF)和佛波酯(PMA)]和各种蛋白激酶抑制剂对N-乙酰氨基葡萄糖转移酶V(GnT-V)活力的影响,以探讨TPK和PKC对GnT-V的调节。结果发现,EGF或PMA处理细胞48h后,GnT-V的活力明显增高;蛋白激酶的非特异性抑制剂槲皮素和染料木黄酮(genistein)在抑制TPK和PKC的同时,抑制GnT-V的基础活力,并完全阻断EGF或PMA对GnT-V的增高作用;TPK的特异性抑制剂Tyrphostin-25和PKC的特异性抑制剂D-鞘氨醇分别应用时,各自只能部分地取消EGF或PMA对GnT-V的诱导。但当Tyrphostin-25和D-鞘氨醇同时加入培养基中则可完全阻断EGF或PMA对GnT-V的诱导激活。蛋白质合成抑制剂环己亚胺和蛋白激酶抑制剂作用相仿,不但可抑制GnT-V的基础活力,也可完全消除EGF或PMA对GnT-V的激活。以上结果提示EGF或PMA通过蛋白激酶调节GnT-V的酶蛋白合成,并且GnT-V受到膜性TPK和PKC的双重调节,其中m-TPK较m-PKC更为重要。  相似文献   

11.
12.
New data are provided to show that (i) rat Sertoli cells produce two types of plasminogen activators, tissue type (tPA) and urokinase type (uPA), and a plasminogen activator inhibitor type-1 (PAI-1); (ii) both tPA (but not uPA) and PAI-1 secretion in the culture are modified by FSH, forskolin, dbcAMP, GnRH, PMA and growth factors (EGF and FGF), but not by hCG and androstenedione (△4); (iii) in vitro secretion of tPA and PA-PAI-1 complexes of Sertoli cells are greatly enhanced by presence of Leydig cells which produce negligible tPA but measurable PAI-1 activity;(iv) combination culture of Sertoli and Leydig cells remarkably increases FSH-induced PAI-1 activity and decreases hCG- and forskolin-induced inhibitor activity as compared with that of two cell types cultured alone. These data suggest that rat Sertoli cells, similar to ovarian granulosa cells, are capable of secreting both tPA and uPA, as well as PAI-1. The interaction of Sertoli cells and Leydig cells is essential for the cells to response to  相似文献   

13.
Axotomy of sympathetic and sensory neurons leads to changes in their neuropeptide phenotypes. These changes are mediated in part by the induction of leukemia inhibitory factor (LIF) by nonneuronal cells. In the present study, we identified satellite/Schwann cells as a possible source of the injury-induced LIF. Using a Schwann cell line, SC-1 cells, we examined mechanisms of LIF induction. LIF mRNA levels increased rapidly when the cells were treated with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, phorbol 12-myristate 13-acetate (PMA), or A23187. Among these reagents, PMA was the most efficacious. Inhibition of protein kinase C (PKC) by GF-1 09203X significantly reduced the PMA-induced LIF mRNA levels. As PKC is known to activate the extracellular signal-regulated kinase (ERK) signaling pathway, the involvement of this pathway in the PMA-stimulated induction of LIF mRNA was examined. Phosphorylation of ERKs was increased following PMA treatment in SC-1 cells. Moreover, inhibition of ERK kinase activity by PD98059 dramatically reduced PMA-stimulated phosphorylation of ERKs and induction of LIF mRNA. These results indicate that LIF mRNA levels can be regulated by ERK activation via stimulation of PKC in Schwann cells.  相似文献   

14.
15.
Gonadotropin-releasing hormone (GnRH) is an important regulator of reproduction in all vertebrates through its actions on the production and secretion of pituitary gonadotropin hormones (GtHs). Most vertebrate species express at least two GnRHs, including one form, designated chicken (c)GnRH-II or type II GnRH, which has been well conserved throughout evolution. The goldfish brain and pituitary contain salmon GnRH and cGnRH-II. In goldfish, GnRH-induced luteinizing hormone (LH) secretion involves PKC; however, whether PKC mediates GnRH stimulation of GtH subunit mRNA levels is unknown. In this study, we used inhibitors and activators of PKC to examine its possible involvement in GnRH-induced increases in GtH-alpha, follicle-stimulating hormone (FSH)-beta and LH-beta mRNA levels in primary cultures of dispersed goldfish pituitary cells. Treatment with PKC inhibitors calphostin C and GF109203X unmasked a basal repression of GtH subunit mRNA levels by PKC; both inhibitors increased GtH subunit mRNA levels in a dose-dependent manner. PKC activators, 12-O-tetradecanoylphorbol 13-acetate (TPA), and 1,2-dioctanoyl-sn-glycerol, stimulated GtH subunit mRNA levels, whereas an inactive phorbol ester (4-alpha-TPA) was without effect. Thus, a dual, inhibitory and stimulatory, influence for PKC in the regulation of GtH subunit mRNA levels is suggested. In contrast, PKC inhibitor- and activator-induced effects were, for the most part, additive to those of GnRH, suggesting that conventional and novel PKCs are unlikely to be involved in GnRH-stimulated increases in GtH subunit mRNA levels. Our data illustrate major differences in the signal transduction of GnRH effects on GtH secretion and gene expression in the goldfish pituitary.  相似文献   

16.
17.
In order to determine the mechanism by which parathyroid hormone (PTH) stimulates plasminogen activator (PA) activity in rat osteoblasts, we investigated the effect of human PTH(1-34) [hPTH(1-34)] on the synthesis of mRNAs for tissue-type PA (tPA), urokinase-type PA (uPA), and PA inhibitor-1 (PAI-1), and on release of PA activity and PAI-1 protein in both normal rat calvarial osteoblasts and UMR 106-01 osteogenic sarcoma cells. hPTH(1-34) (0.25-25 nM) decreased PAI-1 mRNA and protein, and increased PA activity in both cell types in a dose-dependent manner with ED50 of about 1 nM for both responses. Forskolin and isobutylmethylxanthine also stimulated PA activity and decreased PAI-1 protein and mRNA in both cell types. hPTH(1-34) did not show any consistent effect on tPA and uPA mRNA in calvarial osteoblasts, but a modest (two-fold) increase of both mRNAs was observed in UMR 106-01 cells treated with 25 nM hPTH(1-34). However, when protein synthesis was inhibited with 100 microM cycloheximide, the increase of tPA and uPA mRNA by hPTH(1-34) was enhanced in UMR 106-01 cells and became evident in calvarial osteoblasts. Fibrin autography also revealed that hPTH(1-34) increases tPA and uPA activity, especially after cycloheximide treatment in UMR 106-01 cells. These results strongly suggest that PTH increases PA activity predominantly by decreasing PAI-1 protein production through a cyclic adenosine monophosphate (cAMP)-dependent mechanism in rat osteoblasts. The reduction of PAI-1 protein by PTH results in enhanced action of both tPA and uPA, and would contribute to the specific roles of these PAs in bone.  相似文献   

18.
Lee SC  Han JS  Seo JK  Cha YN 《Molecules and cells》2003,15(3):320-326
Lipopolysaccharide (LPS) enhances the expression of cyclooxygenase 2 (COX-2) in macrophages, and stimulates production of prostaglandins that cause endothelial dysfunction in septic shock. In an effort to identify strategies for reducing LPS-inducible expression of COX-2, inhibitors of the phospholipases involved in LPS dependent over-expression of COX-2 were studied. LPS enhances expression of COX-2 mRNA and protein by activating sequentially phosphatidylcholine-specific phospholipase C (PC-PLC), protein kinase C (PKC) and phosphatidylcholine-specific phospholipase D (PC-PLD). This stimulates production of phosphatidic acid (PA), which increases expression of COX-2 mRNA and protein. Inhibition of PC-PLC by D609 (tricyclodecanoyl xanthogenate), and of PC-PLD activity by 1-butanol, reduced LPS-dependent over-production of PA and suppressed the increase of COX-2 mRNA and protein. Activation of PKC, normally seen in LPS-treated cells, was mimicked with phorbol myristic acid (PMA), and this also increased PA production and enhanced COX-2 expression. Propranolol inhibition of phosphatidic acid phosphohydrolase (PPH) increased PA accumulation and enhanced LPS-dependent COX-2 protein synthesis. These results suggest that inhibitors of PC-PLC, PKC and PC-PLD, or activators of PPH could be useful in the management of LPS-induced overproduction of prostaglandins and of vascular dysfunction in septic shock.  相似文献   

19.
We have analysed the effect of mitogenic lectins on c-Fos and c-Jun protein levels as well as on activator protein-1 (AP-1) binding and enhancer activity in Jurkat T-cells. Both c-Fos and c-Jun protein levels were increased after Con A and PHA stimulation. Since T-cell stimulation increases both intracellular Ca2+ and cAMP levels and activates protein kinase C (PKC), the possible involvement of these intracellular messengers in c-Fos and c-Jun induction was tested. PMA, which directly activates PKC, mimicked the effect of the lectins on c-Fos and c-Jun, but elevation of either intracellular Ca2+ or cAMP levels had little or no effect. The mitogen-induced increase of c-Fos and c-Jun immunoreactivity was inhibited by H-7, a kinase inhibitor with relatively high specificity for PKC, and less efficiently by H-8, a structurally related kinase inhibitor less active on PKC, but more active on cyclic nucleotide-dependent kinases. Con A stimulation was found to increase both binding of AP-1 to the AP-1 consensus sequence, TRE, and AP-1 enhancer activity, in Jurkat cells. PMA was also found to increase the AP-1 enhancer activity, whereas elevation of Ca2+ or cAMP had only minor effects. We conclude that stimulation with mitogenic lectins is sufficient to increase both c-Fos and c-Jun protein levels, AP-1 binding and AP-1 enhancer activity in Jurkat cells and that they act via mechanisms that could involve the activation of PKC.  相似文献   

20.
The role of protein kinase C (PKC) on vasopressin (VP) action was investigated by inhibition of endogenous PKC using prolonged incubation of the cells with phorbol ester, and by direct measurement of PKC activity in pituitary cells. Preincubation of the cells for 6 h with 100 nM TPA at 37 C resulted in a 90% decrease in total PKC activity. In the PKC-depleted cells, cAMP responses to stimulation with 100 nM CRF for 30 min were normal, but the potentiating effects of VP and PMA on CRF-stimulated cAMP production were abolished. The stimulation of ACTH secretion by VP and PMA alone was also abolished in PKC- depleted cells. PKC activity in cytosolic and detergent-solubilized membrane fractions from enriched pituitary corticotrophs obtained by centrifugal elutriation, was directly measured by enzymatic assays and by immunoblotting techniques. Basal PKC activity was higher in the cytosol than in the membranes (8.43 +/- 0.47 and 1.93 +/- 0.11 pmol 32P incorporated/10 min, respectively). After incubation of the cells with VP for 15 min or [3H] phorbol-12-myristate-13-acetate (PMA) for 30 min, PKC activity in cytosol was decreased by 40% and 89%, respectively, while the activity in the membrane was increased by 138% and 405%, respectively. Such VP- and PMA-induced translocation of PKC was also observed when the enzyme content in the cytosol and the membranes was measured by immunoblotting using a specific anti-PKC antibody and [125I]protein A. Autoradiographic analysis of immunoblots revealed an 80 kilodalton band characteristic of PKC, with OD higher in the cytosolic than in the membrane fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号