首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructure of the formation of the egg shell in the longidorid nematode Xiphinema diversicaudatum is described. Upon fertilization a vitelline membrane, which constitutes the vitelline layer of the egg shell, is formed. The chitinous layer is secreted in the perivitelline space, between the vitelline layer and the egg cell membrane. On completion of the chitinous layer, the material of the lipid layer is extruded from the egg cytoplasm to the outer surface, through finger-like projections. Both chitinous and lipid layers are secreted by granules in the egg cytoplasm that disappear as the layers are completed. Chitinous and lipid layers are formed during the passage of the egg through the oviduct. The vitelline layer is enriched with secretions produced by the oviduct cells and then by phospholipids secreted by the cells of the pars dilatata oviductus. The inner uterine layer is also formed by deposition of secretory products apposed on the egg shell in the distal uterine region and Z-differentiation. In the proximal part of the uterus, the egg has a discontinuous electron-dense layer, the external uterine layer. Tangential sections between chitinous and uterine layers revealed the presence of holes, possibly egg pores, delimited by the two uterine layers.  相似文献   

2.
D A Wharton 《Parasitology》1979,78(2):145-154
The egg of Aspiculuris tetraptera is an ellipsoid measuring 93 x 40 microns. The shell consists of 5 layers: the external uterine layer, internal uterine layer, vitelline layer, chitinous layer and the lipid layer. This nomenclature is based upon the formation and histochemistry of the shell layers. The internal uterine layer contains a system of interconnecting spaces, partly filled by uterine secretion, which open to the exterior of the egg via breaks in the external uterine layer. The surface of the egg is covered by a system of interconnecting grooves. Freeze-etching reveals that the internal uterine layer is open to the exterior via pores, which open into the grooves. Rod-shaped particles are also revealed in the external uterine layer. The operculum of the egg consists of a modification of the uterine and chitinous layers of the shell.  相似文献   

3.
D A Wharton 《Parasitology》1979,78(2):131-143
The ovary of Aspiculuris tetraptera has a prominent terminal cap cell. This is considered to be part of the ovarian epithelium. Oogonia detach from the short rachis and increase in size from 6 to 60 microns; accumulating hyaline granules, shell granules and glycogen. The hyaline granules persist in the eff cytoplasm after shell formation has been completed and are considered to be lipoprotein yolk. The shell granules contribute to the non-chitin fraction of the chitinous layer. A classification of the cytoplasmic inclusions of the nematode oocyte is proposed. Upon fertilization a vitelline membrane is formed which constitutes the vitelline layer of the egg-shell. The chitinous layer is secreted in the perivitelline space, between the vitelline layer and the egg oolemma. Upon completion of chitinous layer synthesis, the egg cytoplasm contracts away from its inner surface. The material of the lipid layer is secreted at the surface of the egg cytoplasm and adheres to the inner surface of the chitinous layer. During secretion of the chitinous and lipid layers by the egg cytoplasm, the uterine cells secrete the unit membrane-like external uterine layer and the crystalline internal uterine layer. A complex system of interconnecting spaces develops in the internal uterine layer. This system is open to the exterior via breaks in the external uterine layer. There is no direct involvement of the uterine cells in the formation of this structure.  相似文献   

4.
The flexible shell from eggs of the tuatara (Sphenodon punctatus) is comprised of both calcareous and fibrous components. The calcareous material is organized into columns that extend deep into the fibrous shell membrane. Many of the fibers of the membrane are enclosed within the crystalline matrix of the columns. Columns widen and flatten slightly at the outer surface of the eggshell to form cap-like structures composed of a compact crystalline matrix containing no fibers. The outer surface of eggs laid prior to completion of shell formation consists of a series of nodes obscured by a densely fibrous matrix. Similar nodes also are found at the inner surface of partially shelled eggs. The nodes represent the outer and inner aspects of columns that had not completed formation prior to oviposition. Our interpretation is that a layer (or layers) of the shell membrane forms first, with nucleation of columns occurring shortly thereafter. Columns grow into the membrane a short distance and enclose fibers of the membrane, but the primary direction of column growth is toward what will become the outer aspect of the shell. Calcareous columns and the shell membrane form more or less in concert until crystal growth outstrips that of the membrane and a cap-like apex of compact crystalline material is formed. The end result is an eggshell in which the shell membrane and calcareous material form a single unit for much of the thickness of the shell.  相似文献   

5.
Shells from eggs of five species of kinosternid turtle (Sternotherus minor, Kinosternon flavescens, K. baurii, K. Hirtipes, and K. alamosae) were examined with light and scanning electron microscopy. Except for possible differences among species in thickness of eggshells, structure of shells from all eggs was similiar. In general, kinosternid turtles lay eggs having a rigid calcareous layer composed of calcium carbonate in the form of aragonite. The calcareous layer is organized into individual shell units with needlelike crystallites radiating from a common center. Most of the thickness of the eggshell is attributable to the calcareous layer, with the fibrous shell membrane comprising only a small fraction of shell thickness. Pores are found in the calcareous layer, but they are not numereous. The outer surface of the eggshells is sculptured and may have a thick, organic layer in places. The outer surface of the shell membrane of decalcified eggshells is studded with spherical cores which presumably nucleate growth of shell units during shell formation. The shell membrane detaches from eggs incubated to hatching, carrying with it remnants of the calcareous layer. Such changes in shell structure presumably reflect withdrawal of calcium from the eggshell by developing embryos.  相似文献   

6.
This light and transmission electron microscopical study shows that the first polar body is given off before ovulation and that part of its cell membrane and that of the surrounding oocyte have long microvilli at the time of its ejection. Several layers of cumulus cells initially surround the secondary oocyte and first polar body, but the ovulated oocytes in the oviducts in the process of being fertilized do not have cumulus cells around them. Partly expelled second polar bodies occur in the oviduct; they are elongated structures that lack organelles and have electron-dense nuclei. A small fertilization cone appears to form around the sperm tail at the time of sperm entry into the egg and an incorporation cone develops around the sperm head in the egg cytoplasm. In three fertilized eggs a small hole was seen in the zona, which was presumably formed by the spermatozoon during penetration. Cortical granules, present in ovarian oocytes, are not seen in fertilized tubal or uterine eggs; release of their contents probably reduces the chances of polyspermy, although at least one polyspermic fertilized egg was seen and several other fertilized eggs had spermatozoa within the zona pellucida. In the zygote the pronuclei come to lie close together, but there was no evidence of fusion. A "yolk mass," which becomes eccentric before ovulation, is extruded by the time the two-cell embryos are formed, but many vacuoles remain in the non-yolky pole of the egg. A shell membrane of variable thickness is present around all uterine eggs but its origin remains undetermined.  相似文献   

7.
The tertiary shell of the eggs of anostracan crustaceans consists of two layers, an outer cortex and an inner alveolar layer. Scanning electron microscope studies show that, in most species, these layers are separated by a subcortical space which intercommunicates with spaces in the cortex and with the meshwork of the alveolar layer. No evidence was found for direct communication between pores on the surface of Branchipus stagnalis eggs and the subcortical space. No surface pores were found in the eggs of Branchinecta packardi, Chirocephalus diaphanus, Artemia salina, nor in eggs of the notostracan Triops cancriformis. Similarities in structure and possible functions of the egg shells of anostracan crustaceans and certain insects are discussed in relation to similarities in certain features of their environments.  相似文献   

8.
Synbranchus marmoratus is a protogynous diandric teleost fish widely distributed throughout South America. The aim of this work was to study the ultrastructure of the vitelline envelope and the relationship among oocyte and their follicular cells during oogenesis. During perinucleolar stage, the oocyte and the follicular cells form microvillar processes that project into the perivitelline space. The oocyte secretes a dense and amorphous material, which appears as the first evidence of the vitelline envelope (VE) development. The VE passes from a double to a multilayered structure during oocyte growth. In mature oocytes, the VE reach a mean thickness of 11 microm, having up to 30 layers. Oocyte microvilli are thinner than the follicular ones and were seen in contact with the follicular plasmalema, however we could not find any contact between the follicular microvilli and the oolemma. Before ovulation, microvillar processes retract and the pore canals seem to collapse. An outer electron dense layer occludes the superficial pore and forms a continuous layer. No jelly or adhesive coatings were seen at least in ovulated eggs sampled from ovarian lumen. Follicular cell and oocyte cytological characteristics do not differ from those described in other teleosts species.  相似文献   

9.
八种鸡形目鸟类卵壳及壳膜超微结构观察   总被引:8,自引:0,他引:8  
8种鸡中,高原山鹑卵壳仅由乳突层和栅栏层构成,缺少护膜层,表面无裂纹,外气孔开放。其它种类由乳突层、栅栏层和护膜层构成,表面有裂纹、外气孔有覆盖。栅栏层都有与飞翔相适应的气泡,飞翔能力强,速度快的种类产卵壳气泡密度高的卵。  相似文献   

10.
It has been known that many organisms evolved to survive in temporary or ephemeral inland waters. Many of them have dry-resistant eggs against desiccation. The structural feature of egg shell is important because only this will ensure to survive the dry period. Structural features of egg shell in the parthenogenetic Heterocypris incongruens (Ramdohr, 1808) was investigated by scanning electron microscope. Results showed that egg shell structure consists of two distinct layers; an outer layer with holes or alveoli and an inner layer consisting of two dense sublayers. Also, structural similarities in egg-shell of H. incongruens and some other crustaceans which combat desiccation problem will be discussed.  相似文献   

11.
The egg capsule of Isohypsibius granulifer granulifer Thulin 1928 (Eutardigrada: Hypsibiidae) is composed of two shells: the thin vitelline envelope and the multilayered chorion. The process of the formation of the egg shell begins in middle vitellogenesis. The I. g. granulifer vitelline envelope is of the primary type (secreted by the oocyte), but the chorion should be regarded as a mixed type: primary (secreted by the oocyte), and secondary (produced by the cells of gonad wall). During early choriogenesis, the parts of the chorion are produced and then connected into a permanent layer. The completely developed chorion consists of three layers: (1) the inner, medium electron dense layer; (2) the middle labyrinthine layer; (3) the outer, medium electron dense layer. After the formation of the chorion, a vitelline envelope is secreted by the oocyte.  相似文献   

12.
Summary Histochemical studies and electron microscopic investigations on the role of the follicle cells during oogenesis in the chiton Sypharochiton septentriones showed that the main role of the follicle cells was the deposition of a spiny chorion around each oocyte. The chorion was composed of three layers; an inner, acid mucopolysaccharide layer, which was a primary egg membrane secreted by Golgi bodies in the cortical cytoplasm of the oocyte, an intermediate layer of protein and an outer layer of lipid. The intermediate and outer layers were secreted by the follicle cells and were thus secondary egg membranes.  相似文献   

13.
Questions regarding the structure of the inner and outer shell membranes of the chicken egg were addressed in this study by correlating observations from light microscopy and scanning and transmission electron microscopy. The egg membrane had a limiting membrane, which measured .9 to .15 microns in thickness and appeared to be a continuous and an impervious layer, but the shell membrane did not. Under the SEM, each membrane was seen to be made up of several fibre layers. In the tear preparations viewed under the SEM two layers were observed in the egg membranes and three to five layers in the shell membrane, with an apparent plane of cleavage between each layer. Each fibre was made up of a central core and an outer mantle layers. The central core was perforated by channels which measured .08 to 1.11 microns in diameter and ran longitudinally along the length of the fibre. Between the mantle layer and the fibre core was a gap or cleft measuring between .03 to .07 microns. The diameter of the fibres of the inner layer of the egg membrane ranged between .08 to .64 microns, whereas those of the outer layer of the same membrane ranged from .05 to 1.11 microns. Fibres in the shell membrane ranged from .11 to 4.14 microns diameter.  相似文献   

14.
The egg-shell of Labio-strongylus eugenii consists of three layers; an outer vitelline layer, a middle chitinous layer and an inner lipid layer. The presence of chitin and protein in the middle layer was demonstrated by the use of chitinase and differential staining. The lipid layer was found to be made up of two layers, the innermost having large globules on its outer face. The shell was found to be permeable to liquid water, as demonstrated by the penetration of vital dyes. Eggs were able to develop normally with little or no loss of volume during periods of moisture stress when either osmotic or suction pressures were applied. The survival of eggs, as measured by hatching success, over periods of time at a range of saturation deficits and osmotic pressures was measured, and compared with known survival rates for other nematode species. The problems of working with nematode species whose life cycles have not been established are discussed. Possible survival strategies for Australian strongylids during periods of moisture stress are outlined.  相似文献   

15.
The binding of alkyl polyglucoside surfactants to the integral membrane protein bacteriorhodopsin (BR) and the formation of protein-surfactant complexes are investigated by sedimentation equilibrium via analytical ultracentrifugation and by small-angle neutron scattering (SANS). Contrast variation techniques in SANS enable measurement of the composition of the protein-surfactant complexes and determination of the thickness of the surfactant shell bound to the protein. The results indicate that alkyl polyglucosides can bind to BR as single surfactant layers or as a thicker shell. The thickness of the surfactant shell increases with increasing surfactant tail length, and it is generally unrelated to the aggregation number of the micelles even for a small and predominantly hydrophobic membrane protein such as BR. The aggregation numbers determined by sedimentation equilibrium methods match those measured by SANS, which also allows reconstruction of the shape of the protein-detergent complex. When the surfactant is present as a single layer, the BR loses activity, as measured by absorption spectroscopy, more quickly than it does when the surfactant forms a thicker shell.  相似文献   

16.
Intact and decorticated single-celled Ascaris suum eggs were exposed to UV radiation from low-pressure, germicidal lamps at fluences (doses) ranging from 0 to 8,000 J/m2 for intact eggs and from 0 to 500 J/m2 for decorticated eggs. With a UV fluence of 500 J/m2, 0.44-+/-0.20-log inactivation (mean+/-95% confidence interval) (63.7%) of intact eggs was observed, while a fluence of 4,000 J/m2 resulted in 2.23-+/-0.49-log inactivation (99.4%). (The maximum quantifiable inactivation was 2.5 log units.) Thus, according to the methods used here, Ascaris eggs are the most UV-resistant water-related pathogen identified to date. For the range of fluences recommended for disinfecting drinking water and wastewater (200 to 2,000 J/m2), from 0- to 1.5-log inactivation can be expected, although at typical fluences (less than 1,000 J/m2), the inactivation may be less than 1 log. When the eggs were decorticated (the outer egg shell layers were removed with sodium hypochlorite, leaving only the lipoprotein ascaroside layer) before exposure to UV, 1.80-+/-0.32-log reduction (98.4%) was achieved with a fluence of 500 J/m2, suggesting that the outer eggshell layers protected A. suum eggs from inactivation by UV radiation. This protection may have been due to UV absorption by proteins in the outer layers of the 3- to 4-microm-thick eggshell. Stirring alone (without UV exposure) also inactivated some of the Ascaris eggs (approximately 20% after 75 min), which complicated determination of the inactivation caused by UV radiation alone.  相似文献   

17.
A study of the egg shells of the Falconiformes   总被引:2,自引:0,他引:2  
C. Tyler 《Journal of Zoology》1966,150(4):413-425
A study of a selection of egg shells of the Falconiformes has been made similar to the earlier ones on ratites, the Anatidae and the Sphenisciformes. Chemical analyses, and histological and plastic embedding techniques were used.
The main part of the shell in all species studied consists of large crystals running through the shell. There was no layer of fine vertical crystals above this and no cover, and even the cuticle was not very pronounced. Histological studies showed no major differences, except that some shells had vacuoles in the outer layers. All such shells also gave an unetched outer layer when plastic embedded radial sections were studied and thin sections showed spaces between and within crystals. These spaces in the outer layers of the shell were of taxonomic interest for they were not present in the Cathartidae, the Falconidae and Sagittarius serpentarius.
Pore channels appeared to be much sparser than in other orders so far studied and all pores were single. Pigment was present on the surface of some shells, but it was also found in different layers of the shell right down to the cone layer and, in one case, had leaked through on to the membrane.
There were significant relationships between total and soluble shell nitrogen which divided the Falconidae from most of the Accipitridae but left Pernis and Pandion in an intermediate position.  相似文献   

18.
在不利的环境条件下,枝角类中有一部分种类可以形成卵鞍(ephippium),内含休眠卵。本文应用扫描电镜和透射电镜对隆线溞的卵鞍进行了超微结构的研究。研究表明:卵鞍外面大部分略呈浅的蜂窝状,内面则排布着多数卵石状小突起。卵鞍分为内外两层,两层的超微结构截然不同;各层又可分为三小层。  相似文献   

19.
墨龙与红鲫的视网膜和视盖解剖结构比较   总被引:1,自引:0,他引:1  
墨龙是一种由红鲫进化来的龙睛种金鱼(Carassius auratus)。随机取体长10—12 cm, 重约35 g的墨龙和红鲫各4尾, 解剖取出整个眼球及脑, 并常规石蜡切片, HE染色。在光学显微镜下观察墨龙和红鲫的视网膜、视盖系统的显微结构变化并比较各层厚度, 发现与红鲫相比, 墨龙视网膜的总厚度下降29.9%, 其中外网状层厚度增加2.5%、内网状层厚度增加11.8%; 而内核层厚度下降21.6%、外核层厚度降低35.6%, 神经节细胞层、杆锥层也变薄, 且后两者分层不规则; 墨龙视盖壁整体厚度增加28.9%, 其中除围脑室层厚度减少22.6%外, 中央纤维层厚度增加12.8%, 中央细胞层厚度增加30.6%, 表面纤维层厚度增加21.9%, 且纤维远较红鲫密集, 视神经层厚度增加91.7%, 边缘层厚度增加35.6%。结果表明长期的人工选择不但改变了墨龙的外形, 而且使其中枢神经组织结构也发生了较大变化, 并推测墨龙的眼球直径及视网膜面积较大, 从而导致自视网膜传入视盖的纤维增多, 是视网膜和视盖中的传递神经冲动的神经元、神经纤维所在层段增厚的主要原因; 同时墨龙视网膜中色素上皮层向杆锥层交错对插, 富含神经元的视网膜外核层、内核层以及视盖中的围脑室层厚度也降低, 可以减少因视网膜面积大而造成的强光伤害; 此外由于墨龙的围脑室层厚度降低, 导致其游动及平衡能力较红鲫差。  相似文献   

20.
Lampropholis guichenoti is an oviparous lizard that lays eggs with a calcareous outer shell. We used immunofluorescence microscopy to describe the occurrence and distribution of Ca2+ ATPase pumps in the uterus of L. guichenoti at different stages of the reproductive and egg-shelling cycles. Ca2+ ATPase pumps were not demonstrated by immunofluorescent techniques in any uterine tissue until egg-shelling had commenced and at least partly calcified eggs were in the uterus. During egg-shelling, Ca2+ ATPase pumps occur on the apical and baso-lateral surfaces of uterine epithelial cells, and those of associated shell glands in the stroma of the uterus. We conclude that Ca2+ ATPase pumps provide a major mechanism for deposition of the calcareous eggshell of L. guichenoti and that the pumps are up-regulated when required in the reproductive cycle. Furthermore, it is likely that specific calcium glands in the stroma of the uterus are involved in the rapid transport required for egg-shelling, but the differential contribution of luminal and glandular epithelial cells is not known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号