首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A previous genetic map containing 117 microsatellite loci and 400 F(2) plants was used for quantitative trait loci (QTL) mapping in tropical maize. QTL were characterized in a population of 400 F(2:3) lines, derived from selfing the F(2) plants, and were evaluated with two replications in five environments. QTL determinations were made from the mean of these five environments. Grain yield (GY), plant height (PH), ear height (EH) and grain moisture (GM) were measured. Variance components for genotypes (G), environments (E) and GxE interaction were highly significant for all traits. Heritability was 0.69 for GY, 0.66 for PH, 0.67 for EH and 0.23 for GM. Using composite interval mapping (CIM), a total of 13 distinct QTLs were identified: four for GY, four for PH and five for EH. No QTL was detected for GM. The QTL explained 32.73 % of the phenotypic variance of GY, 24.76 % of PH and 20.91 % of EH. The 13 QTLs displayed mostly partial dominance or overdominance gene action and mapped to chromosomes 1, 2, 7, 8 and 9. Most QTL alleles conferring high values for the traits came from line L-14-4B. Mapping analysis identified genomic regions associated with two or more traits in a manner that was consistent with correlation among traits, supporting either pleiotropy or tight linkage among QTL. The low number of QTLs found, can be due to the great variation that exists among tropical environments.  相似文献   

2.
Photoperiod sensitivity is an important consideration in maize cultivation. Flowering time is affected by photoperiod and sensitivity to it limits the potential for successful exchange of germplasm across different latitudes. For resolving the genetic basis of photoperiod sensitivity in maize, a set of 207 recombinant inbred lines derived from a temperate and tropical inbred line cross was evaluated for 2 years in a long-day and short-day environment. Genetic linkage maps were constructed using 237 SSR markers with a total length 1,974.3 cM, and an average space between two makers of 8.33 cM. Twenty-nine QTL were detected for the five measured photoperiod sensitivity traits using composite interval mapping and multiple interval mapping. QTL for flowering time, plant height and leaf number, under long-day conditions, were found clustered on chromosome 10, while QTL for short-day conditions resided on chromosome 3. The QTL in the bin 10.04 region of chromosome 10 were detected associated with photoperiod sensitivity and related traits during long days. These results indicated that this region might contain an important photoperiod sensitivity element.  相似文献   

3.
玉米和水稻重要性状QTL的比较研究   总被引:14,自引:0,他引:14  
严建兵  汤华  黄益勤  郑用琏  李建生 《遗传学报》2004,31(12):1401-1407
在构建玉米分子标记连锁图和对重要性状进行QTL定位的基础上,以玉米和水稻的分子标记比较图谱为桥梁,分析了控制玉米和水稻F2:3群体重要农艺和产量性状QTL的共线性关系。研究结果表明:在玉米和水稻共线性的染色体区段,控制玉米株高、行数和行粒数的QTL与控制水稻株高、单株有效穗和每穗实粒数的QTL存在广泛的对应关系;在已定位的影响玉米株高等5个性状的45个QTL中,有16个与水稻“汕优63”群体中5个相同或相似性状所定位的38个QTL中的12个具有共线性关系。这一结果为利用水稻的基因组数据来定位、分离和克隆玉米重要性状的QTL提供了有益信息。同时发现,控制水稻某一个性状的QTL常常与控制玉米同一性状的两个QTL相对应,这一结果为玉米染色体是由水稻染色体加倍而来的理论假设提供了支持。研究还发现,不管是玉米还是水稻在染色体上都存在QTL的富集区域,而这些富集区域常常存在于相同的共线性区域,暗示着玉米和水稻控制相同或相似性状的QTL可能有着相同的起源。基于性状的比较基因组研究不但有助于新基因或QTL的发现、克隆和利用,同时还有助于研究不同物种间染色体的演变和进化规律。  相似文献   

4.
Rice double-haploid (DH) lines of an indica and japonica cross were grown at nine different locations across four countries in Asia. Genotype-by-environment (G x E) interaction analysis for 11 growth- and grain yield-related traits in nine locations was estimated by AMMI analysis. Maximum G x E interaction was exhibited for fertility percentage number of spikelets and grain yield. Plant height was least affected by environment, and the AMMI model explained a total of 76.2% of the interaction effect. Mean environment was computed by averaging the nine environments and subsequently analyzed with other environments to map quantitative trait loci (QTL). QTL controlling the 11 traits were detected by interval analysis using mapmaker/qtl. A threshold LOD of >/=3.20 was used to identify significant QTL. A total of 126 QTL were identified for the 11 traits across nine locations. Thirty-four QTL common in more than one environment were identified on ten chromosomes. A maximum of 44 QTL were detected for panicle length, and the maximum number of common QTL were detected for days to heading detected. A single locus for plant height (RZ730-RG810) had QTL common in all ten environments, confirming AMMI results that QTL for plant height were affected the least by environment, indicating the stability of the trait. Two QTL were detected for grain yield and 19 for thousand-grain weight in all DH lines. The number of QTL per trait per location ranged from zero to four. Clustering of the QTL for different traits at the same marker intervals was observed for plant height, panicle number, panicle length and spikelet number suggesting that pleiotropism and or tight linkage of different traits could be the possible reason for the congruence of several QTL. The many QTL detected by the same marker interval across environments indicate that QTL for most traits are stable and not essentially affected by environmental factors.  相似文献   

5.
One hundred twenty six doubled-haploid (DH) rice lines were evaluated in nine diverse Asian environments to reveal the genetic basis of genotype × environment interactions (GEI) for plant height (PH) and heading date (HD). A subset of lines was also evaluated in four water-limited environments, where the environmental basis of G × E could be more precisely defined. Responses to the environments were resolved into individual QTL × environment interactions using replicated phenotyping and the mixed linear-model approach. A total of 37 main-effect QTLs and 29 epistatic QTLs were identified. On average, these QTLs were detectable in 56% of the environments. When detected in multiple environments, the main effects of most QTLs were consistent in direction but varied considerably in magnitude across environments. Some QTLs had opposite effects in different environments, particularly in water-limited environments, indicating that they responded to the environments differently. Inconsistent QTL detection across environments was due primarily to non- or weak-expression of the QTL, and in part to significant QTL × environment interaction effects in the opposite direction to QTL main effects, and to pronounced epistasis. QTL × environment interactions were trait- and gene-specific. The greater GEI for HD than for PH in rice were reflected by more environment-specific QTLs, greater frequency and magnitude of QTL × environment interaction effects, and more pronounced epistasis for HD than for PH. Our results demonstrated that QTL × environment interaction is an important property of many QTLs, even for highly heritable traits such as height and maturity. Information about QTL × environment interaction is essential if marker-assisted selection is to be applied to the manipulation of quantitative traits.Communicated by G. Wenzel  相似文献   

6.
Molecular-marker loci were used to investigate the adaptation differences between highland and lowland tropical maize. An F2 population from the cross of two inbred lines independently derived from highland and lowland maize germplasm was developed, and extracted F3:4 lines were phenotype in replicated field trials at four thermally diverse tropical testing sites, ranging from lowland to extreme highland (mean growing season temperature range 13.2–24.6°C). Traits closely related with adaptation, such as biomass and grain yield, yield components, days from sowing to male and female flowering, total leaf number, plant height and number of primary tassel branches (TBN), were analyzed. A large line × environment interaction was observed for most traits. The genetic basis of this interaction was reflected by significant, but systematic, changes from lowland to highland sites in the correlation between the trait value and genomic composition (designated by the proportion of marker alleles with the same origin). Joint analysis of quantitative trait loci (QTLs) over sites detected 5–8 QTLs for each trait (except disease scores, with data only from one site). With the exception of one QTL for TBN, none of these accounted for more than 15% of the total phenotypic variation. In total, detected QTLs accounted for 24–61% of the variation at each site on average. For yield, yield components and disease scores, alleles generally favored the site of origin. Highland-derived alleles had little effect at lowland sites, while lowland-derived alleles showed relatively broader adaptation. Gradual changes in the estimated QTL effects with increasing mean site temperature were observed, and paralleled the observed patterns of adaptation in highland and lowland germplasm. Several clusters of QTLs for different traits reflected the relative importance in the adaptation differences between the two germplasm types, and pleiotropy is suggested as the main cause for the clustering. Breeding for broad thermal adaptation should be possible by pooling genes showing adaptation to specific thermal regimes, though perhaps at the expense of reduced progress for adaptation to a specific site. Molecular marker-assisted selection would be an ideal tool for this task, since it could greatly reduce the linkage drag caused by the unintentional transfer of undesirable traits. Received: 10 October 1998 / Accepted: 9 April 1999  相似文献   

7.
A better understanding of the genetics of complex traits, such as yield, may be achieved by using molecular tools. This study was conducted to estimate the number, genome location, effect and allele phase of QTLs determining agronomic traits in the two North American malting barley (Hordeum vulgare L.) quality variety standards. Using a doubled haploid population of 140 lines from the cross of two-rowed Harrington×six-rowed Morex, agronomic phenotypic data sets from nine environments, and a 107-marker linkage map, we performed QTL analyses using simple interval mapping and simplified composite interval mapping procedures. Thirty-five QTLs were associated, either across environments or in individual environments, with five grain and agronomic traits (yield, kernel plumpness, test weight, heading date, and plant height). Significant QTL×environment interaction was detected for all traits. These interactions resulted from both changes in the magnitude of response and changes in the sign of the allelic effect. QTLs for multiple traits were coincident. The vrs1 locus on chromosome 2 (2H), which determines inflorescence row type, was coincident with the largest-effect QTL determining four traits (yield, kernel plumpness, test weight, and plant height). QTL analyses were also conducted separately for each sub-population (six-rowed and two-rowed). Seven new QTLs were detected in the sub-populations. Positive transgressive segregants were found for all traits, but they were more prevalent in the six-rowed sub-population.QTL analysis should be useful for identifying candidate genes and introgressing favorable alleles between germplasm groups. Received: 18 August 2000 / Accepted: 15 December 2000  相似文献   

8.
株高和穗位高是玉米重要育种性状,直接影响植株的养分利用效率及抗倒伏性,进而影响玉米产量。玉米株高和穗位高属于典型数量性状,目前通过数量性状位点(quantitative trait loci mapping,QTL)定位和全基因组关联分析(genome-wide association study, GWAS)等方法已挖掘到较多相关遗传位点,通过QTL精细定位及利用突变体克隆了一些调控株高和穗位高关键基因。但是由于各研究组所利用的群体类型和大小、标记类型和密度以及统计方法不同,所鉴定QTL差异较大,单个研究难以揭示玉米株高和穗位高遗传结构。早期QTL定位的结果多以遗传距离来展示,不同时期GWAS研究所使用参考基因组版本不同,这进一步增加了借鉴和利用前人研究结果的难度。首次将目前已鉴定株高和穗位高遗传定位信息统一锚定至玉米自交系B73参考基因组V4版本,构建了株高和穗位高性状定位的一致性图谱,并鉴定出可被多个独立研究定位的热点区间。进一步对已克隆玉米株高和穗位高调控基因进行总结与分类,揭示株高和穗位高性状调控机制,对深度解析株高和穗位高遗传结构、指导基因克隆和利用分子标记辅助选择优化玉米株高和穗位高性状均具有重要意义。  相似文献   

9.
An F2 population of pea (Pisum sativum L.) consisting of 174 plants was analysed by restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) techniques. Ascochyta pisi race C resistance, plant height, flowering earliness and number of nodes were measured in order to map the genes responsible for their variation. We have constructed a partial linkage map including 3 morphological character genes, 4 disease resistance genes, 56 RFLP loci, 4 microsatellite loci and 2 RAPD loci. Molecular markers linked to each resistance gene were found: Fusarium wilt (6 cM from Fw), powdery mildew (11 cM from er) and pea common Mosaic virus (15 cM from mo). QTLs (quantitative traits loci) for Ascochyta pisi race C resistance were mapped, with most of the variation explained by only three chromosomal regions. The QTL with the largest effect, on chromosome 4, was also mapped using a qualitative, Mendelian approach. Another QTL displayed a transgressive segregation, i.e. the parental line that was susceptible to Ascochyta blight had a resistance allele at this QTL. Analysis of correlations between developmental traits in terms of QTL effects and positions suggested a common genetic control of the number of nodes and earliness, and a loose relationship between these traits and height.  相似文献   

10.
Populus is a genus of fast growing trees that may be suitable as a bioenergy crop grown in short rotation, but understanding the genetic nature of yield and genotype interactions with the environment is critical in developing new high-yield genotypes for wide-scale planting. In the present study, 210 genotypes from an F2 population (Family 331; POP1) derived from a cross between Populus trichocarpa 93-968 and P. deltoides ILL-129 were grown in southern UK, central France and northern Italy. The performance of POP1, based upon first- and second-year main stem traits and biomass production, improved from northern to southern Europe. Trees at the Italian site produced the highest mean biomass ranging from 0.77 to 18.06 oven-dried tonnes (ODT) ha−1 year−1, and the UK site produced the lowest mean biomass ranging from 0.18 to 10.31 ODT ha−1 year−1. Significant genotype × environment interactions were seen despite heritability values across sites being moderate to high. Using a pseudo-testcross analysis, 37 quantitative trait loci (QTL) were identified for the maternal parent and 45 for the paternal parent for eight stem and biomass traits across the three sites. High genetic correlations between traits suggested that collocating QTL could be inferred as a single pleiotropic QTL, reducing the number of unique QTL to 23 and 24 for the maternal and paternal parent, respectively. Additive genetic effects were seen to differ significantly for eight QTL on the maternal map and 20 on the paternal map across sites. An additive main effects and multiplicative interaction analysis was carried out to obtain stability parameters for each trait. These parameters were mapped as QTL, and collocation to trait QTL was accessed. Two of the eight stability QTL collocate to trait QTL on the maternal map, and 8 of the 20 stability QTL collocate to trait QTL on the paternal map, suggesting that a regulatory gene model is prevalent over an allele sensitivity model for stem trait stability across these environments.  相似文献   

11.
The productivity of sorghum is mainly determined by quantitative traits such as grain yield and stem sugar-related characteristics. Substantial crop improvement has been achieved by breeding in the last decades. Today, genetic mapping and characterization of quantitative trait loci (QTLs) is considered a valuable tool for trait enhancement. We have investigated QTL associated with the sugar components (Brix, glucose, sucrose, and total sugar content) and sugar-related agronomic traits (flowering date, plant height, stem diameter, tiller number per plant, fresh panicle weight, and estimated juice weight) in four different environments (two locations) using a population of 188 recombinant inbred lines (RILs) from a cross between grain (M71) and sweet sorghum (SS79). A genetic map with 157 AFLP, SSR, and EST-SSR markers was constructed, and several QTLs were detected using composite interval mapping (CIM). Further, additive × additive interaction and QTL × environmental interaction were estimated. CIM identified more than five additive QTLs in most traits explaining a range of 6.0–26.1% of the phenotypic variation. A total of 24 digenic epistatic locus pairs were identified in seven traits, supporting the hypothesis that QTL analysis without considering epistasis can result in biased estimates. QTLs showing multiple effects were identified, where the major QTL on SBI-06 was significantly associated with most of the traits, i.e., flowering date, plant height, Brix, sucrose, and sugar content. Four out of ten traits studied showed a significant QTL × environmental interaction. Our results are an important step toward marker-assisted selection for sugar-related traits and biofuel yield in sorghum.  相似文献   

12.
Qiu F  Zheng Y  Zhang Z  Xu S 《Annals of botany》2007,99(6):1067-1081
BACKGROUND AND AIMS: Soil waterlogging is a major environmental stress that suppresses maize (Zea mays) growth and yield. To identify quantitative trait loci (QTL) associated with waterlogging tolerance at the maize seedling stage, a F2 population consisting of 288 F(2:3) lines was created from a cross between two maize genotypes, 'HZ32' (waterlogging-tolerant) and 'K12' (waterlogging-sensitive). METHODS: The F2 population was genotyped and a base-map of 1710.5 cM length was constructed with an average marker space of 11.5 cM based on 177 SSR (simple sequence repeat) markers. QTL associated with root length, root dry weight, plant height, shoot dry weight, total dry weight and waterlogging tolerance coefficient were identified via composite interval mapping (CIM) under waterlogging and control conditions in 2004 (EXP.1) and 2005 (EXP.2), respectively. KEY RESULTS AND CONCLUSIONS: Twenty-five and thirty-four QTL were detected in EXP.1 and EXP.2, respectively. The effects of each QTL were moderate, ranging from 3.9 to 37.3 %. Several major QTL determining shoot dry weight, root dry weight, total dry weight, plant height and their waterlogging tolerance coefficient each mapped on chromosomes 4 and 9. These QTL were detected consistently in both experiments. Secondary QTL influencing tolerance were also identified and located on chromosomes 1, 2, 3, 6, 7 and 10. These QTL were specific to particular traits or environments. Although the detected regions need to be mapped more precisely, the findings and QTL found in this study may provide useful information for marker-assisted selection (MAS) and further genetic studies on maize waterlogging tolerance.  相似文献   

13.
大白菜部分形态性状的QTL定位与分析   总被引:13,自引:0,他引:13  
于拴仓  王永健  郑晓鹰 《遗传学报》2003,30(12):1153-1160
应用352个标记位点的大白菜AFLP和RAPD图谱和一套栽培品种间杂交获得的重组自交系群体,采用复合区间作图的方法对大白菜9个形态性状进行QTL定位及遗传效应研究。在14个连锁群上检测到50个QTL:其中控制株型的QTL有5个;控制株高的QTL有6个;控制开展度的QTL有5个;控制最大叶长的QTL有7个;控制最大叶宽的QTL有4个;控制叶形指数的QTL有6个;控制中肋长的QTL有7个;控制中肋宽的QTL有4个;控制抽苔的QTL有6个。另外,估算了单个QTL的遗传贡献率和加性效应。这将为大白菜品种改良中形态性状的分子标记辅助选择提供理论依据。  相似文献   

14.
路明  周芳  谢传晓  李明顺  徐云碧  张世煌 《遗传》2007,29(9):1131-1138
为了增加单位面积产量, 玉米育种者已经开始了更密植更紧凑株型的选育。叶夹角和叶向值是评价玉米株型的重要指标。本研究以掖478×丹340的500个F2单株为作图群体, 构建了具有138个位点的SSR标记连锁图谱, 图谱总长度为1 394.9 cM, 平均间距10.1 cM。利用397个F2:3家系对叶夹角和叶向值进行QTL定位分析, 结果表明: 叶夹角和叶向值分别检测到6和8个QTL, 累计解释表型变异41.0%和60.8%, 单个QTL的贡献率在2.9%~13.6%之间。与叶夹角和叶向值有关的基因主要作用方式为加性和部分显性。此外两个性状共检测到9对上位性互作位点, 表明上位性互作在叶夹角和叶向值的遗传中也起较重要的作用。  相似文献   

15.
Wang C  Chen Y  Ku L  Wang T  Sun Z  Cheng F  Wu L 《PloS one》2010,5(11):e14068

Background

An understanding of the genetic determinism of photoperiod response of flowering is a prerequisite for the successful exchange of germplasm across different latitudes. In order to contribute to resolve the genetic basis of photoperiod sensitivity in maize, a set of 201 recombinant inbred lines (RIL), derived from a temperate and tropical inbred line cross were evaluated in 5 field trials spread in short- and long-day environments.

Methodology/Principal Findings

Firstly, QTL analyses for flowering time and photoperiod sensitivity in maize were conducted in individual photoperiod environments separately, and then, the total genetic effect was partitioned into additive effect (A) and additive-by-environment interaction effect (AE) by using a mixed-model-based composite interval mapping (MCIM) method.

Conclusions/Significance

Seven putative QTL were found associated with DPS thermal time based on the data estimated in individual environments. Nine putative QTL were found associated with DPS thermal time across environments and six of them showed significant QTL×enviroment (QE) interactions. Three QTL for photoperiod sensitivity were identified on chromosome 4, 9 and 10, which had the similar position to QTL for DPS thermal time in the two long-day environment. The major photoperiod sensitive loci qDPS10 responded to both short and long-day photoperiod environments and had opposite effects in different photoperiod environment. The QTL qDPS3, which had the greatest additive effect exclusively in the short-day environment, were photoperiod independent and should be classified in autonomous promotion pathway.  相似文献   

16.
Drought often delays developmental events so that plant height and above-ground biomass are reduced, resulting in yield loss due to inadequate photosynthate. In this study, plant height and biomass measured by the Normalized Difference Vegetation Index (NDVI) were used as criteria for drought tolerance. A total of 305 lines representing temperate, tropical and subtropical maize germplasm were genotyped using two single nucleotide polymorphism (SNP) chips each containing 1536 markers, from which 2052 informative SNPs and 386 haplotypes each constructed with two or more SNPs were used for linkage disequilibrium (LD) or association mapping. Single SNP- and haplotype-based LD mapping identified two significant SNPs and three haplotype loci [a total of four quantitative trait loci (QTL)] for plant height under well-watered and water-stressed conditions. For biomass, 32 SNPs and 12 haplotype loci (30 QTL) were identified using NDVIs measured at seven stages under the two water regimes. Some significant SNP and haplotype loci for NDVI were shared by different stages. Comparing significant loci identified by single SNP- and haplotype-based LD mapping, we found that six out of the 14 chromosomal regions defined by haplotype loci each included at least one significant SNP for the same trait. Significant SNP haplotype loci explained much higher phenotypic variation than individual SNPs. Moreover, we found that two significant SNPs (two QTL) and one haplotype locus were shared by plant height and NDVI. The results indicate the power of comparative LD mapping using single SNPs and SNP haplotypes with QTL shared by plant height and biomass as secondary traits for drought tolerance in maize.  相似文献   

17.
The natural variation of many traits is controlled by multiple genes, individually referred to as quantitative trait loci (QTL), that interact with the environment to determine the ultimate phenotype of any individual. A QTL has yet to be described molecularly, in part because strategies to systematically identify them are underdeveloped and because the subtle nature of QTLs prevents the application of standard methods of gene identification. Therefore, it will be necessary to develop a systematic approach(es) for the identification of QTLs based upon the numerous positional data now being accumulated through molecular marker analyses. We have characterized a QTL by the following three-step approach: (1) identification of a QTL in complex populations, (2) isolation and genetic mapping of this QTL in near-isogenic lines, and (3) identification of a candidate gene using map position and physiological criteria. Using this approach we have characterized a plant height QTL in maize that maps to chromosome 9 near the centromere. Both map position and physiological criteria suggest the gibberillin biosynthesis gene dwarf3 as a candidate gene for this QTL.  相似文献   

18.
Quantitative trait locus (QTL) and QTL x environment (E) interaction effects for agronomic and malting quality traits were measured using a 123-point linkage map and multi-environment phenotype data from an F1-derived doubled haploid population of barley (Hordeum vulgare). The QTL × E interactions were due to differences in magnitude of QTL effects. Highly significant QTL effects were found for all traits at multiple sites in the genome. Yield QTL peaks and support intervals often coincided with plant height and lodging QTL peaks and support intervals. QTL were detected in the vicinity of a previously mapped Mendelian maturity locus and known function probes for- and-amylase genes. The average map density (9.6 cM) should be adequate for molecular marker-assisted selection, particularly since there were few cases of alternative favorable alleles for different traits mapping to the same or adjacent intervals.Oreg Agric Exp Stn J No. 10150  相似文献   

19.
玉米株高和穗位高遗传基础的QTL剖析   总被引:13,自引:0,他引:13  
兰进好  褚栋 《遗传》2005,27(6):925-934
利用玉米强优势组合(Mo17×黄早四)自交衍生的191个F2单株构建了由SSR和AFLP标记组成的分子连锁图谱.F2进一步自交产生的184个F2:3家系用于调查株高和穗位高的表型值.采用基于混合线性模型的复合区间作图法和相应的作图软件QTLmapper/V2.0,分别定位了7个株高和6个穗位高QTL;检测到18对控制株高和13对控制穗位高的上位性效应位点;同时发现了与环境存在显著互作的6个株高和8个穗位高单位点标记区域以及4对株高和4对穗位高上位性效应区域.分析了各种遗传因素在株高和穗位高遗传基础中的相对作用大小,指出了加性、显性和上位性是玉米株高和穗位高的重要遗传基础.并对所定位的QTL的真实性、株高和穗位高的关系以及研究结果对分子育种的启示予以讨论.  相似文献   

20.
大豆遗传图谱的构建和若干农艺性状的QTL定位分析   总被引:15,自引:1,他引:14  
大豆许多重要农艺性状都是由微效多基因控制的数量性状,对这些数量性状进行QTL定位是大豆数量性状遗传研究领域的一个重要内容.本研究利用栽培大豆科新3号为父本、中黄20为母本杂交得到含192个单株的F2分离群体,构建了含122 个SSR标记、覆盖1719.6cM、由33个连锁群组成的连锁遗传图谱.利用复合区间作图法,对该群体的株高、主茎节数、单株粒重和蛋白质含量等农艺性状的调查数据进行QTL分析,共找到两个株高QTL,贡献率分别为9.15%和6.08%;两个主茎节数QTL,贡献率分别为10. 1%和8.6%;一个蛋白质含量QTL,贡献率为9.8%;一个单株粒重QTL,贡献率为11.4% .通过遗传作图共找到与所定位的4个农艺性状QTL连锁的6个SSR标记,这些标记可以应用于大豆种质资源的分子标记辅助选择,从而为大豆分子标记辅助育种提供理论依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号