首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When immunological tolerance breaks down, autoimmune destruction of insulin-producing beta cells in the pancreas can cause insulin-dependent diabetes mellitus. We previously showed that transgenic nonobese diabetic (NOD) mice expressing IL-4 in the pancreas (NOD-IL-4 mice) were protected from insulitis and diabetes. Here we have characterized the avoidance of pathological autoimmunity in these mice. The absence of disease did not result from a lack of T cell priming, because T cells responding to dominant islet Ags were present. These islet Ag-specific T cells displayed a Th2 phenotype, indicating that Th2 responses could account for the observed tolerance. Interestingly, islet Ag-specific Th1 T cells were present and found to be functional, because neutralization of the Th2 effector cytokines IL-4 and IL-10 resulted in diabetes. Histological examination revealed that NOD-IL-4 splenocytes inhibited diabetogenic T cells in cotransfer experiments by limiting insulitis and delaying diabetes. Neutralization of IL-4 in this system abrogated the ability of NOD-IL-4 splenocytes to delay the onset of diabetes. These results indicate that IL-4 expressed in the islets does not prevent the generation of pathogenic islet responses but induces islet Ag-specific Th2 T cells that block the action of diabetogenic T cells in the pancreas.  相似文献   

2.
NOD (non-obese diabetic) mice develop type 1 diabetes mellitus spontaneously and with a strong similarity to the human disease. Differentiation and function of pancreas beta cells are regulated by a variety of hormones and growth factors, including the nerve growth factor (NGF). Gangliosides have multiple immunomodulatory activities with immunosuppressive properties, decreasing lymphoproliferative responses and modulating cytokine production. In the present study, serum, pancreas islets and spleen mononuclear cells from NOD mice treated with monosialic ganglioside GM1 (100 mg/kg/day) and the group control which received saline solution were isolated to investigate the proinflammatory cytokines (IL-1beta, IFN-gamma, IL-12, TNF-alpha), NGF and its high-affinity receptor TrkA, peri-islet Schwann cells components (GFAP, S100-beta) expression and the relationship with diabetes onset and morphological aspects. Our results suggest that GM1 administration to female NOD mice beginning at the 4th week of life is able to reduce the index of inflammatory infiltrate and consequently the expression of diabetes, modulating the expression of proinflammatory cytokines (IL-12, IFN-gamma, TNF-alpha and IL-1beta). Furthermore, GM1 increases GFAP, S-100beta and NGF in pancreas islets, factors involved in beta cell survival.  相似文献   

3.
This study evaluated the release of Th1 and Th2 cytokines from human lymphomononuclear cells (LMC) in response to purified human (HI) or bovine (BI) islets, and the role of long-term (3-4 weeks) islet culture and removal of monocyte-macrophage cells. The results showed that HI and BI caused a similar increase of the release of gamma interferon (IFN), IL-2 and IL-6 from LMC, whereas BI had a more marked effect than HI on IL-10 release. Culturing the islets had possible positive effects (reduction of IFN and IL-2), but also potentially negative effects (increase of TNF). Removal of monocyte-macrophage cells determined a significant reduction of IL-6, IL-10 and TNF production in response to xeno-islets.  相似文献   

4.
BACKGROUND: The loss of beta cells in type 1 diabetes may involve protein kinases because they control cell growth, differentiation, and survival. Previous studies have revealed that GTK, a Src-like protein tyrosine kinase expressed in beta cells (also named Bsk/Iyk), regulates multiple responses including growth and survival of rat insulinoma cells (RINm5F) and differentiation of neuronal PC12 cells. In the present study, we have generated a transgenic mouse expressing a kinase active GTK mutant (GTK-Y504F) under the control of the rat insulin I promoter to establish a role of GTK in beta cells. MATERIALS AND METHODS: Control and GTK-transgenic CBA mice were used for determination of in vivo glucose tolerance and the relative insulin-positive area. Isolated islets from both groups were cultured in the absence and presence of cytokines and insulin secretion, viability and protein expression were assessed. RESULTS: The beta-cell mass of GTK-transgenic mice was increased as a consequence of a larger pancreas and an increased relative beta-cell area. Islets isolated from the transgenic animals exhibited an enhanced glucose-induced insulin release and reduced viability in response to cytokines that could not be explained by higher levels of nitric oxide (NO) compared with control islets. Extracellular signal-regulated kinase (ERK) 1/2, p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), and Akt were all activated by cytokines, but GTK-transgenic islets contained higher basal levels of phosphorylated ERK1/2 and lower basal levels of phosphorylated p38 compared with the control islets. The total amount of activated MAPKs was, however, higher in the cytokine-stimulated transgenic islets compared with the control islets due to increased levels of phospho-ERK1/2. Moreover, the proline-rich tyrosine kinase (PYK) 2 (also named RAFTK/CAK beta/CADTK) levels were elevated in response to a 24-hr exposure to cytokines in control islets but not in the GTK-transgenic islets. CONCLUSIONS: These results suggest that although GTK increases the beta-cell mass, it also enhances islet cell death in response to cytokines and may thus be involved in the beta-cell damage in type 1 diabetes.  相似文献   

5.
目的探讨恒河猴糖尿模型病细胞因子的水平和变化规律。方法健康恒河猴5只,小剂量(30mg/kg)多次静脉注射链脲佐菌素(STZ),血糖稳定后3、9、12和19个月检测血清中白细胞介素-6(IL-6)、白细胞介素-10(IL-10)、肿瘤坏死因子-α(TNF-α)的含量。安乐濒死状态的动物,取胰腺、肝脏、肾脏制成石蜡切片,用免疫组化染色法显示组织中IL-6、IL-10、TNF-α的表达,并对结果进行图像分析和统计学处理。结果造模后9个月动物血清中IL-10浓度显著降低(P<0.01)。IL-6、TNF-α水平在采样的各个时间点均显著高于造模前(P<0.01)。胰腺组织中IL-6中等强度着色,对照组弱阳性表达(P<0.05)。对照组IL-10强阳性表达,模型组弱阳性(P<0.01)。模型组TNF-α中等强度表达,对照组弱阳性(P<0.05)。模型组肝脏组织TNF-α中等阳性表达,对照组弱阳性(P<0.05)。结论小剂量多次注射STZ后恒河猴细胞因子的含量及变化与临床类似,可作为相关研究的动物模型。  相似文献   

6.
7.
The aim of this study was to investigate the mechanisms driving fibrosis in the submandibular glands (SMG) of patients with IgG4-related disease (IgG4-RD). Immunohistochemistry showed that many fibroblast-like cells expressing IL-6, IL-18, TSLP, IL-33, and MMP1 were present in SMG from the affected patients. SMG fibroblasts were derived from patients with or without IgG4-RD and were cultured in vitro. Expression of IL-6, IL-18, TSLP, IL-33 and MMP1, the secretion of IL-6 and G2/M phase were upregulated in the fibroblasts from the affected patients. By treatment with inflammatory cytokines IL-1β, TNFα or TGF-β after treatment with or without the NF-κB inhibitor curcumin, curucumin blocked the production and secretion of IL-6 upregulated by IL-1β, TNFα, or TNFα/TGF-β in all fibroblasts. Wnt1-inducible signaling protein 1 (WISP1), which can enhance fibroblasts proliferation, was also more abundantly expressed in affected fibroblasts, while treatment with IL-6 induced WISP1, treatment with WISP1 increased the G2/M phase, and curucumin inhibited WISP1 induced by TNFα/TGF-β in unaffected fibroblasts. IL-33 in affected fibroblasts was induced by IL-1β, TNFα, or TNFα/TGF-β, while the effect of IL-1β or TNFα/TGF-β was blocked by curcumin. These results suggest fibrosis in the SMG of affected patients is closely linked to the proliferation of fibroblasts following induction of IL-6 and WISP1 by inflammatory cytokines. The Th2 cytokines TSLP and IL-33 are also upregulated in affected SMG, and thus may cause chronic inflammation and IgG4 accumulation.  相似文献   

8.
9.
10.
Morphometrical and immunocytochemical techniques have been applied in order to characterize the pancreatic acinar cells located in peri-insular and tele-insular regions of the pancreas. The results obtained, have shown that the acinar cells of the peri-insular regions are twice as large as those of the tele-insular. On the other hand, the volume density of all organelles, except that of the zymogen granules, remains constant implying that the larger the cell, the larger are its organelles. For the zymogen granules however, their volume density was found to be higher in peri-insular acinar cells. The immunofluorescence technique applied for the demonstration of amylase and chymotrypsinogen has confirmed the presence of an inhomogeneity in the staining. Acinar cells in peri-insular regions show a brighter fluorescent staining. At the electron microscope level, both amylase and chymotrypsinogen were demonstrated in all organelles of acinar cells involved in protein secretion. Quantitative evaluations demonstrate no major differences in the intensity of labeling per micron2 between organelles of peri-insular and tele-insular cells. These results put together demonstrate that peri-insular acinar cells contain higher amounts of secretory proteins because their organelles are larger and their zymogen granules are more numerous. The partition of the exocrine pancreas into peri- and tele-insular regions, confirmed herein through morphometrical and cytochemical techniques, is discussed in relation to the possible influence of the endocrine secretion arising from the islets of Langerhans on the surrounding acinar cells.  相似文献   

11.
The control of lymphocyte recruitment to the site of inflammation is an important component determining the pathogenicity of an autoimmune response. Progression from insulitis to diabetes in the nonobese diabetic mouse is typically associated with Th1 pancreatic inflammation, whereas Th2 inflammation can seemingly be controlled indefinitely. We show that a Th1 (IFN-gamma) pancreatic environment greatly accelerates the recruitment of adoptively transferred islet-specific CD4 T cells to the islets and also accelerates the onset of diabetes. The increased number of islet-reactive T cells in the pancreas does not result from increased proliferation or a decreased rate of apoptosis; instead, it appears to be caused by a greatly facilitated rate of entry to the pancreas. In contrast, a Th2 (IL-4) pancreatic environment does act to enhance Ag-specific proliferation and decrease the rate of apoptosis in islet-specific CD4 T cells. Nonpathogenic/regulatory cells are not preferentially expanded by the presence of IL-4. Increased recruitment to the islets was also observed in the presence of IL-4, but to a lesser extent than in the presence of IFN-gamma, and this lesser increase in the rate of recruitment did not accelerate diabetes onset within the time period examined. Therefore, the production of Th1 cytokines by initial islet-infiltrating cells may cause a greater increase than Th2 cytokines in the rate of recruitment of activated T cells. This difference in rate of recruitment may be critical in determining whether the initial infiltrate proceeds to diabetes or whether a steady state insulitis develops that can be maintained.  相似文献   

12.
Recent investigations suggest that cytotoxic cytokines such as tumor necrosis factor (TNF)alpha and interleukin (IL)-1beta or free radicals play an essential role in destruction of pancreatic beta cells in Type 1 diabetes and that, therefore, anti-oxidant or anti-TNF alpha and IL-1beta therapy could prevent the development of Type I diabetes. Troglitazone belongs to a novel class of antidiabetic agent possessing the ability to enhance insulin action provably through activating PPAR gamma and to scavenge free radicals. In the present study, we examined whether troglitazone can prevent the development of Type 1 diabetes in multiple, low-dose streptozotocin (MLDSTZ)-injected mice. In addition, effects of troglitazone on cytokine-induced pancreatic beta cell damage were examined in vitro. Type 1 diabetes was induced by MLDSTZ injection to DBA/2 mice (40 mg/kg/day for 5 days). Troglitazone was administered as a 0.2% food admixture (240 mg/kg/day) for 4 weeks from the start of or immediately after STZ injection. MLDSTZ injection elevated plasma glucose to 615 +/- 8 mg/dl 4 weeks after final STZ injection and was accompanied by infiltration of leukocytes to pancreatic islets (insulitis). Troglitazone treatment with MLDSTZ injection prevented hyperglycemia (230 +/- 30 mg/dl) and, suppressed insulitis and TNF alpha production from intraperitoneal exudate cells. TNF alpha (10 pg/ml) and IL-1beta (1 pg/ml) addition to hamster insulinoma cell line HIT-T15 for 7 days in vitro decreased insulin secretion and cell viability. Simultaneous troglitazone addition (0.03 to approximately 3 microM) significantly improved cytokine-induced decrease in insulin secretion and in cell viability. These findings suggest that troglitazone prevents the development of Type 1 diabetes in the MLDSTZ model by suppressing insulitis associated with decreasing TNF alpha production from intraperitoneal exudate cells and the subsequent TNF alpha and IL-1beta-induced beta cell damage.  相似文献   

13.
Recent studies suggest that Fas expression on pancreatic beta cells may be important in the development of autoimmune diabetes in the nonobese diabetic (NOD) mouse. To address this, pancreatic islets from NOD mice were analyzed by flow cytometry to directly identify which cells express Fas and Fas ligand (FasL) ex vivo and after in vitro culture with cytokines. Fas expression was not detected on beta cells isolated from young (35 days) NOD mice. In vitro, incubation of NOD mouse islets with both IL-1 and IFN-gamma was required to achieve sufficient Fas expression and sensitivity for islets to be susceptible to lysis by soluble FasL. In islets isolated from older (>/=125 days) NOD mice, Fas expression was detected on a limited number of beta cells (1-5%). FasL was not detected on beta cells from either NOD or Fas-deficient MRLlpr/lpr islets. Also, both NOD and MRLlpr/lpr islets were equally susceptible to cytokine-induced cell death. This eliminates the possibility that cytokine-treated murine islet cells commit "suicide" due to simultaneous expression of Fas and FasL. Last, we show that NO is not required for cytokine-induced Fas expression and Fas-mediated apoptosis of islet cells. These findings indicate that beta cells can be killed by Fas-dependent cytotoxicity; however, our results raise further doubts about the clinical significance of Fas-mediated beta cell destruction because few Fas-positive cells were isolated immediately before the development of diabetes.  相似文献   

14.
The Bio Breeding (BB) rat is a useful animal model of type 1 autoimmune diabetes. The aim of this study was to observe and follow the cytokine and antigenic expressions within the islets of Langerhans in young non-diabetic, in pre-diabetic hyperglycemic, and in overtly diabetic animals. BB rats were therefore checked at day 21 up to day 90 of life for blood glucose, insulin levels, degree of islet infiltration, expression of proinflammatory and protective cytokines and antibodies including CD4, CD8, CD25, LFA-1, and ICAM-1. Animals were treated with insulin as they became diabetic. We found that islets of non-diabetic BB rats became positive to both IL-1beta and IL-4 very early on, confirming a local but intense production of both cytokines within the islets during the initial non-diabetic period. In addition, we observed that the production of these interleukins together with the expression levels of CD4 and CD25 are events predictive for type 1 diabetes onset in non-diabetic BB rats, as for non-obese diabetic (NOD) mice. In particular, the production of IL-1beta and IL-4 during the non-diabetic period together with the lack of enhancement of CD4 and CD25, indicating selective recruitment of activated T cells, may explain the failure of anti-diabetic treatments in this animal model of type 1 diabetes.  相似文献   

15.
16.
Recent studies suggest that tumor necrosis factor (TNF) family members such as TNFalpha and lymphotoxin alphabeta (LTalpha1beta2) are important in the development of follicular dendritic cells (FDCs) and maintenance of FDC function. In this study we used FDC-like cells (FDC-LC) cultured from normal human tonsil and investigated the effects of TNF and LTalpha1beta2 on expression of adhesion molecules and the production of cytokines and chemokines. TNF and LTalpha1beta2 both increased the expression of VCAM-1 and ICAM-1 on FDC-LC. In addition, IL-4 with LTalpha1beta2 synergistically increased the expression of VCAM-1, but not ICAM-1. Cytokine IL-6 and IL-15 mRNAs were induced following stimulation with TNF and LTalpha1beta2. These two cytokines were present in FDC-LC supernatants by ELISA and increased following TNF and LTalpha1beta2 stimulation. We also examined FDC-LC for chemokines, which affect B cells, including IL-8, SDF-1, MIP3beta/ELC, and BCA-1/BLC. SDF-1 mRNA and protein were expressed by FDC-LC, and following stimulation with TNF and LTalpha1beta2, decreases in both were observed. Therefore, TNF and LTalpha1beta2, which are produced by activated B cells, increased the expression of adhesion molecules and cytokines from FDC-LC, potentially providing key signals to support germinal center B cell survival and differentiation.  相似文献   

17.
The onset of autoimmune diabetes is related to defective immune regulation. Recent studies have shown that NK T cells are deficient in number and function in both diabetic patients and nonobese diabetic (NOD) mice. NK T cells, which are CD1d restricted, express a TCR with an invariant V alpha 14-J alpha 281 chain and rapidly produce large amounts of cytokines. V alpha 14-J alpha 281 transgenic NOD mice have increased numbers of NK T cells and are protected against diabetes onset. In this study we analyzed where and how NK T cells interfere with the development of the anti-islet autoimmune response. NK T cells, which are usually rare in lymph nodes, are abundant in pancreatic lymph nodes and are also present in islets. IL-4 mRNA levels are increased and IFN-gamma mRNA levels decreased in islets from diabetes-free V alpha 14-J alpha 281 transgenic NOD mice; the IgG1/IgG2c ratio of autoantibodies against glutamic acid decarboxylase is also increased in these mice. Treatment with IL-12 (a pro-Th1 cytokine) or anti-IL-4 Ab abolishes the diabetes protection in V alpha 14-J alpha 281 NOD mice. The protection from diabetes conferred by NK T cells is thus associated with a Th2 shift within islets directed against autoantigen such as glutamic acid decarboxylase. Our findings also demonstrate the key role of IL-4.  相似文献   

18.
针对肿瘤坏死因子(TNF)在肿瘤治疗剂量下产生的严重毒副作用及一些肿瘤细胞上白细胞介素-6(IL-6)受体明显增高的事实,根据TNF结构与功能研究的最新信息,利用PCR技术,对人TNFα基因进行了改造,并将其与人IL-6成熟肽编码区cDNA通过人工接头进行融合。融合蛋白在大肠杆菌中表达后,Westernblot分析表明,分子量约为37kD;活性检测结果证实,该融合蛋白兼具有TNF抗肿瘤活性和结合IL-6受体的能力,在高表达IL-6受体的人骨髓瘤细胞上测得的细胞毒活性较同样位点突变的TNF高约3倍。  相似文献   

19.
We have produced transgenic mouse strains harboring class II major histocompatibility complex or interferon-gamma genes linked to the human insulin promoter. These experiments were designed to investigate the consequences of the expression of immunological effector molecules by nonimmunological cells. In both of these studies we observed the disappearance from the pancreas of the insulin-producing beta cells coinciding with the development of insulin-dependent diabetes mellitus. Transgenic mice expressing both chains of the I-A gene showed progressive atrophy of the islets of Langerhans, whereas mice expressing interferon-gamma suffered an inflammatory destruction of the islets.  相似文献   

20.
Type 1 diabetes results from the T cell-mediated destruction of pancreatic beta cells. Islet transplantation has recently become a potential therapeutic approach for patients with type 1 diabetes. However, islet-graft failure appears to be a challenging issue to overcome. Thus, complementary gene therapy strategies are needed to improve the islet-graft survival following transplantation. Immune modulation through gene therapy represents a novel way of attacking cytotoxic T cells targeting pancreatic islets. Various death ligands of the TNF family such as FasL, TNF, and TNF-Related Apoptosis-Inducing Ligand (TRAIL) have been studied for this purpose. The over-expression of TNF or FasL in pancreatic islets exacerbates the onset of type 1 diabetes generating lymphocyte infiltrates responsible for the inflammation. Conversely, the lack of TRAIL expression results in higher degree of islet inflammation in the pancreas. In addition, blocking of TRAIL function using soluble TRAIL receptors facilitates the onset of diabetes. These results suggested that contrary to what was observed with TNF or FasL, adenovirus mediated TRAIL gene delivery into pancreatic islets is expected to be therapeutically beneficial in the setting of experimental models of type 1 diabetes. In conclusion; this study mainly reveals the fundamental principles of death ligand-mediated immune evasion in diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号