首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Together with the development of optical sensors, fluorometry is becoming an increasingly attractive tool for the monitoring of cultivation processes. In this context, the green fluorescence protein (GFP) has been proposed as a molecular reporter when fused to target proteins to study their subcellular localization or secretion behaviour. The present work evaluates the use of the GFP fusion partner for monitoring extracellular production of a Rhizopus oryzae lipase (ROL) in Pichia pastoris by means of 2D-fluorimetric techniques  相似文献   

2.

Background  

The green fluorescent protein has revolutionized many areas of cell biology and biotechnology since it is widely used in determining gene expression and for localization of protein expression. Expression of recombinant GFP in E. coli K12 host from pBAD24M-GFP construct upon arabinose induction was significantly lower than that seen in E. coli B cells with higher expression at 30°C as compared to 37°C in E. coli K12 hosts. Since OmpT levels are higher at 37°C than at 30°C, it prompted us to modify the OmpT proteolytic sites of GFP and examine such an effect on GFP expression and fluorescence. Upon modification of one of the two putative OmpT cleavage sites of GFP, we observed several folds enhanced fluorescence of GFP as compared to unmodified GFPuv (Wild Type-WT). The western blot studies of the WT and the SDM II GFP mutant using anti-GFP antibody showed prominent degradation of GFP with negligible degradation in case of SDM II GFP mutant while no such degradation of GFP was seen for both the clones when expressed in BL21 cells. The SDM II GFP mutant also showed enhanced GFP fluorescence in other E. coli K12 OmpT hosts like E. coli JM109 and LE 392 in comparison to WT GFPuv. Inclusion of an OmpT inhibitor, like zinc with WT GFP lysate expressed from an E. coli K12 host was found to reduce degradation of GFP fluorescence by two fold.  相似文献   

3.

Background  

Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation.  相似文献   

4.

Background  

Nuclear pore complexes (NPCs) are essential for facilitated, directional nuclear transport; however, the mechanism by which ~30 different nucleoporins (nups) are assembled into NPCs is unknown. We combined a genetic strategy in Saccharomyces cerevisiae with Green Fluorescence Protein (GFP) technology to identify mutants in NPC structure, assembly, and localization. To identify such mutants, a bank of temperature sensitive strains was generated and examined by fluorescence microscopy for mislocalization of GFP-tagged nups at the non-permissive temperature.  相似文献   

5.

Background

The green fluorescent protein (GFP) has proven a useful marker in retroviral gene transfer studies targeting hematopoietic stem cells (HSCs) in mice. However, several investigators have reported very low in vivo peripheral blood marking levels in nonhuman primates after transplantation of HSCs transduced with the GFP gene. We retrovirally marked cynomolgus monkey HSCs with the GFP gene, and tracked in vivo marking levels within both bone marrow progenitor cells and mature peripheral blood cells following autologous transplantation after myeloablative conditioning.

Methods

Bone marrow cells were harvested from three cynomolgus macaques and enriched for the primitive fraction by CD34 selection. CD34+ cells were transduced with one of three retroviral vectors all expressing the GFP gene and were infused after myeloablative total body irradiation (500 cGy × 2). Following transplantation, proviral levels and fluorescence were monitored among clonogenic bone marrow progenitors and mature peripheral blood cells.

Results

Although 13–37% of transduced cells contained the GFP provirus and 11–13% fluoresced ex vivo, both provirus and fluorescence became almost undetectable in the peripheral blood within several months after transplantation regardless of the vectors used. However, on sampling of bone marrow at multiple time points, significant fractions (5–10%) of clonogenic progenitors contained the provirus and fluoresced ex vivo reflecting a significant discrepancy between GFP gene marking levels within bone marrow cells and their mature peripheral blood progeny. The discrepancy (at least one log) persisted for more than 1 year after transplantation. Since no cytotoxic T lymphocytes against GFP were detected in the animals, an immune response against GFP is an unlikely explanation for the low levels of transduced peripheral blood cells. Administration of granulocyte colony stimulating factor and stem cell factor resulted in mobilization of transduced bone marrow cells detectable as mature granulocyte progeny which expressed the GFP gene, suggesting that transduced progenitor cells in bone marrow could be mobilized into the peripheral blood and differentiated into granulocytes.

Conclusions

Low levels of GFP‐transduced mature cells in the peripheral blood of nonhuman primates may reflect a block to differentiation associated with GFP; this block can be overcome in part by nonphysiological cytokine treatment ex vivo and in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

6.

Background  

The green fluorescent protein (GFP) has been widely used in cell biology as a marker of gene expression, label of cellular structures, fusion tag or as a crucial constituent of genetically encoded biosensors. Mutagenesis of the wildtype gene has yielded a number of improved variants such as EGFP or colour variants suitable for fluorescence resonance energy transfer (FRET). However, folding of some of these mutants is still a problem when targeted to certain organelles or fused to other proteins.  相似文献   

7.

Background  

"Protein-trap" is a method that allows epitope-tagging of endogenous proteins. This method allows for the identification of endogenously expressed proteins that exhibit specific localization of interest. This method has been recently reported for its application in the study of Drosophila development by using a relatively large epitope, green-fluorescent-protein (GFP).  相似文献   

8.

Background  

Green Fluorescent Protein (GFP) is used extensively as a reporter for transgene expression in Drosophila and other organisms. However, GFP has not generally been used as a reporter for circadian patterns of gene expression, and it has not previously been possible to correlate patterns of reporter expression with 3D movement and behavior of transgenic animals.  相似文献   

9.

Aim

It has been reported that bone marrow-derived cells (BMDC) can be original cells of mouse gastric cancers induced by Helicobacter felis (H. felis) infection. However, it is unknown whether BMDCs are also the original cells of mouse gastrointestinal cancers induced by gastric carcinogens N-nitroso-N-methylurea (NMU) and H. felis infection.

Methods

C57BL/6 recipient mice were initially irradiated with 10Gy X-ray, reconstituted with bone marrow cells from the C57BL/6-Tg (CAG-EGFP) donor mice to label BMDCs with green fluorescence protein (GFP). After 4 weeks of recovery, the bone marrow-transplanted mice were given NMU in drinking water (240 ppm) and subsequently infected with H. felis by gavage. Eighty weeks later, all mice were euthanized for pathological examination. The BMDCs expressing GFP were detected in tissues using direct GFP fluorescence confocal microscopy analysis and immunohistochemistry staining (IHC) assays.

Results

Neoplastic lesions were induced by NMU treatment and/or H. felis infection at the antrum of the glandular stomach and small intestine. In the direct GFP fluorescence confocal assay, GFP(+) epithelial cell cluster or glands were not observed in these gastrointestinal tumors, however, most GFP(+) BMDCs sporadically located in the tumor stromal tissues. Some of these GFP(+) stromal BMDCs co-expressed the hematopoietic marker CD45 or myofibroblasts markers αSMA and SRF. In the indirect GFP IHC assay, similar results were observed among 11 gastric intraepithelial neoplasia lesions and 2 small intestine tumors.

Conclusion

These results demonstrated that BMDCs might not be the source of gastrointestinal tumor cells induced by NMU and/or H. felis infection.  相似文献   

10.

Background  

DsRed the red fluorescent protein (RFP) isolated from Discosoma sp. coral holds much promise as a genetically and spectrally distinct alternative to green fluorescent protein (GFP) for application in mice. Widespread use of DsRed has been hampered by several issues resulting in the inability to establish and maintain lines of red fluorescent protein expressing embryonic stem cells and mice. This has been attributed to the non-viability, or toxicity, of the protein, probably as a result of its obligate tetramerization. A mutagenesis approach directing the stepwise evolution of DsRed has produced mRFP1, the first true monomer. mRFP1 currently represents an attractive autofluorescent reporter for use in heterologous systems.  相似文献   

11.

Background  

Fluorescent proteins such as the green fluorescent protein (GFP) have widely been used in transgenic animals as reporter genes. Their use in transgenic Xenopus tadpoles is especially of interest, because large numbers of living animals can easily be screened. To track more than one event in the same animal, fluorescent markers that clearly differ in their emission spectrum are needed.  相似文献   

12.

Background

The establishment of high producer is an important issue in Chinese hamster ovary (CHO) cell culture considering increased heterogeneity by the random integration of a transfected foreign gene and the altered position of the integrated gene. Fluorescence-activated cell sorting (FACS)-based cell line development is an efficient strategy for the selection of CHO cells in high therapeutic protein production.

Results

An internal ribosome entry site (IRES) was introduced for using two green fluorescence protein (GFP) fragments as a reporter to both antibody chains, the heavy chain and the light chain. The cells co-transfected with two GFP fragments showed the emission of green fluorescence by the reconstitution of split GFP. The FACS-sorted pool with GFP expression had a higher specific antibody productivity (q Ab) than that of the unsorted pool. The q Ab was highly correlated with the fluorescence intensity with a high correlation coefficient, evidenced from the analysis of median GFP and q Ab in individual selected clones.

Conclusions

This study proved that the fragment complementation for split GFP could be an efficient indication for antibody production on the basis of high correlation of q Ab with reconstitution of GFP. Taken together, we developed an efficient FACS-based screening method for high antibody-producing CHO cells with the benefits of the split GFP system.  相似文献   

13.

Background  

Members of the green fluorescent protein (GFP) family share sequence similarity and the 11-stranded β-barrel fold. Fluorescence or bright coloration, observed in many members of this family, is enabled by the intrinsic properties of the polypeptide chain itself, without the requirement for cofactors. Amino acid sequence of fluorescent proteins can be altered by genetic engineering to produce variants with different spectral properties, suitable for direct visualization of molecular and cellular processes. Naturally occurring GFP-like proteins include fluorescent proteins from cnidarians of the Hydrozoa and Anthozoa classes, and from copepods of the Pontellidae family, as well as non-fluorescent proteins from Anthozoa. Recently, an mRNA encoding a fluorescent GFP-like protein AmphiGFP, related to GFP from Pontellidae, has been isolated from the lancelet Branchiostoma floridae, a cephalochordate (Deheyn et al., Biol Bull, 2007 213:95).  相似文献   

14.
15.

Background

While the static structure of the intracellular Ca2+ release channel, the ryanodine receptor type 1 (RyR1) has been determined using cryo electron microscopy, relatively little is known concerning changes in RyR1 structure that accompany channel gating. Förster resonance energy transfer (FRET) methods can resolve small changes in protein structure although FRET measurements of RyR1 are hampered by an inability to site-specifically label the protein with fluorescent probes.

Methodology/Principal Findings

A novel site-specific labeling method is presented that targets a FRET acceptor, Cy3NTA to 10-residue histidine (His) tags engineered into RyR1. Cy3NTA, comprised of the fluorescent dye Cy3, coupled to two Ni2+/nitrilotriacetic acid moieties, was synthesized and functionally tested for binding to His-tagged green fluorescent protein (GFP). GFP fluorescence emission and Cy3NTA absorbance spectra overlapped significantly, indicating that FRET could occur (Förster distance = 6.3 nm). Cy3NTA bound to His10-tagged GFP, quenching its fluorescence by 88%. GFP was then fused to the N-terminus of RyR1 and His10 tags were placed either at the N-terminus of the fused GFP or between GFP and RyR1. Cy3NTA reduced fluorescence of these fusion proteins by 75% and this quenching could be reversed by photobleaching Cy3, thus confirming GFP-RyR1 quenching via FRET. A His10 tag was then placed at amino acid position 1861 and FRET was measured from GFP located at either the N-terminus or at position 618 to Cy3NTA bound to this His tag. While minimal FRET was detected between GFP at position 1 and Cy3NTA at position 1861, 53% energy transfer was detected from GFP at position 618 to Cy3NTA at position 1861, thus indicating that these sites are in close proximity to each other.

Conclusions/Significance

These findings illustrate the potential of this site-specific labeling system for use in future FRET-based experiments to elucidate novel aspects of RyR1 structure.  相似文献   

16.

Background  

Anthracnose, caused by Colletotrichum dematium, is a serious threat to the production and quality of mulberry leaves in susceptible varieties. Control of the disease has been a major problem in mulberry cultivation. Some strains of Burkholderia cepacia were reported to be useful antagonists of plant pests and could increase the yields of several crop plants. Although B. cepacia Lu10-1 is an endophytic bacterium obtained from mulberry leaves, it has not been deployed to control C. dematium infection in mulberry nor its colonization patterns in mulberry have been studied using GFP reporter or other reporters. The present study sought to evaluate the antifungal and plant-growth-promoting properties of strain Lu10-1, to clarify its specific localization within a mulberry plant, and to better understand its potential as a biocontrol and growth-promoting agent.  相似文献   

17.
18.

Background  

Non-invasive autofluorescent reporters have revolutionized lineage labeling in an array of different organisms. In recent years green fluorescent protein (GFP) from the bioluminescent jellyfish Aequoria Victoria has gained popularity in mouse transgenic and gene targeting regimes [1]. It offers several advantages over conventional gene-based reporters, such as lacZ and alkaline phosphatase, in that its visualization does not require a chromogenic substrate and can be realized in vivo. We have previously demonstrated the utility and developmental neutrality of enhanced green fluorescent protein (EGFP) in embryonic stem (ES) cells and mice [2].  相似文献   

19.
20.

Background  

Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P 2] is a critically important regulatory phospholipid found in the plasma membrane of all eukaryotic cells. In addition to being a precursor of important second messengers, PtdIns(4,5)P 2 also regulates ion channels and transporters and serves the endocytic machinery by recruiting clathrin adaptor proteins. Visualization of the localization and dynamic changes in PtdIns(4,5)P 2 levels in living cells is critical to understanding the biology of PtdIns(4,5)P 2. This has been mostly achieved with the use of the pleckstrin homology (PH) domain of PLCδ1 fused to GFP. Here we report on a comparative analysis of several recently-described yeast PH domains as well as the mammalian Tubby domain to evaluate their usefulness as PtdIns(4,5)P 2 imaging tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号