首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upregulation of programmed death ligand 1 (PD-L1) helps tumor cells escape from immune surveillance, and therapeutic antibodies targeting PD-1/PD-L1 have shown better patient outcomes only in several types of malignancies. Recent studies suggest that the clinical efficacy of anti-PD-1/PD-L1 treatments is associated with PD-L1 levels; however, the underlying mechanism of high PD-L1 protein levels in cancers is not well defined. Here, we report that the deubiquitinase OTUB1 positively regulates PD-L1 stability and mediates cancer immune responses through the PD-1/PD-L1 axis. Mechanistically, we demonstrate that OTUB1 interacts with and removes K48-linked ubiquitin chains from the PD-L1 intracellular domain in a manner dependent on its deubiquitinase activity to hinder the degradation of PD-L1 through the ERAD pathway. Functionally, depletion of OTUB1 markedly decreases PD-L1 abundance, reduces PD-1 protein binding to the tumor cell surface, and causes increased tumor cell sensitivity to human peripheral blood mononuclear cells (PBMCs)-mediated cytotoxicity. Meanwhile, OTUB1 ablation-induced PD-L1 destabilization facilitates more CD8+ T cells infiltration and increases the level of IFN-γ in serum to enhance antitumor immunity in mice, and the tumor growth suppression by OTUB1 silencing could be reversed by PD-L1 overexpression. Furthermore, we observe a significant correlation between PD-L1 abundance and OTUB1 expression in human breast carcinoma. Our study reveals OTUB1 as a deubiquitinating enzyme that influences cancer immunosuppression via regulation of PD-L1 stability and may be a potential therapeutic target for cancer immunotherapy.Subject terms: Proteins, Immune evasion  相似文献   

2.
Recent clinical data support ideas of Programmed death receptor-ligand 1 (PD-L1; also called B7-H1, CD274) playing an important role in immune evasion of tumor cells. Expression of PD-L1 on tumors strongly correlates with the survival of cancer patients. PD-L1 on tumors interacts with the co-inhibitory molecule Programmed death receptor-1 (PD-1, CD279) on T cells mediating decreased TCR-mediated proliferation and cytokine production. In animal tumor models, blockade of PD-L1/PD-1 interactions resulted in an improved tumor control. In addition, exhausted T cells during chronic viral infections could be revived by PD-L1 blockade. Thus, targeting PD-L1/PD-1 interactions might improve the efficacy of adoptive cell therapies (ACT) of chronic infections as well as cancers. Obstacles for a general blockade of PD-L1 might be its role in mediating peripheral tolerance. This review discusses the currently available data concerning the role of PD-L1 in tumor immune evasion and envisions possibilities for implementation into ACT for cancer patients. This article is a symposium paper from the conference “Cancer Immunotherapy 2006 Meets Strategies for Immune Therapy,” held in Mainz, Germany, on 4–5 May 2006.  相似文献   

3.
To maintain immune homeostasis in the intestine, the intestinal immune system has evolved several tolerogenic mechanisms toward intestinal microflora and food antigens. Although programmed cell death-1 (PD-1) protein has been implicated in immunological tolerance in the intestine and gut-associated lymphoid tissues (GALTs), distribution of its ligands PD-L1 and PD-L2 in the small intestine lamina propria (LP) are unknown. We investigated PD-L1 expression in intestinal LP and found that IgA plasma cells (PCs) were major PD-L1 expressing cells. PD-L1 expression levels on IgA PCs were higher than that on IgG PCs in peripheral lymphoid tissues. IgA PCs expressed antigen-presenting molecule MHC class II and co-stimulatory molecules CD80, CD86, and PD-L2. IgA PCs isolated from intestinal LP exhibited antigen presentation activity, and in the presence of TGF-β induced FoxP3+ regulatory T cells, but not IFN-γ+ Th1 cells, from naïve T cells. Thus, IgA PCs in the intestine may be involved in an immune regulatory role in the intestinal immune system.  相似文献   

4.
Programmed death receptor ligand 1 (PD-L1, also called B7-H1) is a recently described B7 family member. In contrast to B7-1 and B7-2, PD-L1 does not interact with either CD28 or CTLA-4. To date, one specific receptor has been identified that can be ligated by PD-L1. This receptor, programmed death receptor 1 (PD-1), has been shown to negatively regulate T-cell receptor (TCR) signaling. Upon ligating its receptor, PD-L1 has been reported to decrease TCR-mediated proliferation and cytokine production. PD-1 gene–deficient mice developed autoimmune diseases, which early led to the hypothesis of PD-L1 regulating peripheral tolerance. In contrast to normal tissues, which show minimal surface expression of PD-L1 protein, PD-L1 expression was found to be abundant on many murine and human cancers and could be further up-regulated upon IFN- stimulation. Thus, PD-L1 might play an important role in tumor immune evasion. This review discusses the currently available data concerning negative T-cell regulation via PD-1, the blockade of PD-L1/PD-1 interactions, and the implications for adoptive T-cell therapies.  相似文献   

5.
Programmed death-ligand-1 (PD-L1) is an immune suppressor that inhibits T cell based immunity. Anti-PD-L1/PD-1 immunotherapy benefits those patients receiving platinum-based combinational chemotherapy. However, the underlying mechanism is still largely unknown. In this study, we found that carboplatin could induce PD-L1 expression in NSCLC H292, A549 and H1299 cells in a dose-dependent manner. mRNA sequencing and the subsequent validation assays found that carboplatin significantly induced PVR expression, which is considered as an immuno-adhesion molecule. Mechanistically, PVR knockdown significantly abrogated carboplatin-induced PD-L1 expression. Functionally, knockdown of PVR significantly reversed the CD3+ T cells proliferation inhibition caused by carboplatin increased PD-L1. Moreover, the carboplatin-induced PVR and subsequent up-regulation of PD-L1 might be mediated via the EGFR, PI3K/AKT, and ERK signaling pathways. Immunohistochemical staining results showed that the PD-L1 expression was positively associated with PVR expression in clinical NSCLC samples. Our study reveals a novel regulatory mechanism of PD-L1 expression, provides evidence that carboplatin inhibits tumor immune response by up-regulating PD-L1 expression and explains the rationale for combining platinum-based chemotherapy with PD-L1/PD-1 inhibitors.  相似文献   

6.
通过固定化金属离子亲和层析进行柱上复性与纯化,获得高纯度的可溶性PD-L1胞外域(sPD-L1),其纯度达95%,纯化的sPD-L1经免疫印迹分析得到验证,并具有与其受体PD-1的特异性结合活性;以该抗原免疫小鼠获得高滴度的抗血清,并以制备的sPD-L1-HiTrap亲和层析柱纯化获得高纯度特异性抗体;将该抗体与另一商业化抗体结合建立了一种灵敏的双夹心ELISA法,检测范围为1ng/mL~100ng/mL,可用于分析可溶性PD-L1的含量。可溶性sPD-L1及其抗体的制备不仅可用于人体内特异性抗体和可溶性PD-L1的检测,同时也为进一步研究其体内外活性及其受体的性质提供了条件。  相似文献   

7.
Programmed cell death protein 1 (PD-1) is expressed on T cells upon T cell receptor (TCR) stimulation. PD-1 ligand 1 (PD-L1) is expressed in most tumor environments, and its binding to PD-1 on T cells drives them to apoptosis or into a regulatory phenotype. The fact that PD-L1 itself is also expressed on T cells upon activation has been largely neglected. Here, we demonstrate that PD-L1 ligation on human CD25-depleted CD4+ T cells, combined with CD3/TCR stimulation, induces their conversion into highly suppressive T cells. Furthermore, this effect was most prominent in memory (CD45RACD45RO+) T cells. PD-L1 engagement on T cells resulted in reduced ERK phosphorylation and decreased AKT/mTOR/S6 signaling. Importantly, T cells from rheumatoid arthritis patients exhibited high basal levels of phosphorylated ERK and following PD-L1 cross-linking both ERK signaling and the AKT/mTOR/S6 pathway failed to be down modulated, making them refractory to the acquisition of a regulatory phenotype. Altogether, our results suggest that PD-L1 signaling on memory T cells could play an important role in resolving inflammatory responses; maintaining a tolerogenic environment and its failure could contribute to ongoing autoimmunity.

This study shows that programmed death cell receptor ligand 1 (PD-L1) signaling in memory CD4+ T cells from healthy individuals induces a regulatory phenotype; this mechanism seems to be defective in equivalent T cells from rheumatoid arthritis patients and could be in part responsible for the pathology.  相似文献   

8.
Protective immunity against Mycobacterium tuberculosis requires the generation of cell-mediated immunity. We investigated the expression and role of programmed death 1 (PD-1) and its ligands, molecules known to modulate T cell activation, in the regulation of IFN-gamma production and lytic degranulation during human tuberculosis. We demonstrated that specific Ag-stimulation increased CD3+PD-1+ lymphocytes in peripheral blood and pleural fluid from tuberculosis patients in direct correlation with IFN-gamma production from these individuals. Moreover, M. tuberculosis-induced IFN-gamma participated in the up-regulation of PD-1 expression. Blockage of PD-1 or PD-1 and its ligands (PD-Ls: PD-L1, PD-L2) enhanced the specific degranulation of CD8+ T cells and the percentage of specific IFN-gamma-producing lymphocytes against the pathogen, demonstrating that the PD-1:PD-Ls pathway inhibits T cell effector functions during active M. tuberculosis infection. Furthermore, the simultaneous blockage of the inhibitory receptor PD-1 together with the activation of the costimulatory protein signaling lymphocytic activation molecule led to the promotion of protective IFN-gamma responses to M. tuberculosis, even in patients with weak cell-mediated immunity against the bacteria. Together, we demonstrated that PD-1 interferes with T cell effector functions against M. tuberculosis, suggesting that PD-1 has a key regulatory role during the immune response of the host to the pathogen.  相似文献   

9.
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells that are closely related to tumor immune escape, but the mechanism by which MDSCs regulate B cells has not been elucidated. Our previous studies revealed that breast cancer-derived MDSCs could induce a group of PD-1PD-L1+ Bregs with immunosuppressive functions. Here, we reported that blocking PD-1/PD-L1 interaction between MDSCs and B cells could reverse the immunosuppressive functions of PD-1PD-L1+ Bregs. The activation of PI3K/AKT/NF-κB signaling pathway is essential for PD-1PD-L1+ Bregs to exert immunosuppressive effects. MDSCs activated the PI3K/AKT/NF-κB pathway in B cells via the PD-1/PD-L1 axis. Furthermore, inhibition of PD-1/PD-L1 or PI3K/AKT signaling suppressed both tumor growth and the immunosuppressive functions of PD-1PD-L1+ Bregs. Dual suppression of PD-1/PD-L1 and PI3K/AKT exerted better antitumor effect. Finally, MDSCs and PD-1PD-L1+ Bregs were colocalized in breast cancer tissues and PD-1PD-L1+ Bregs were positively correlated with poor prognosis. Thus, MDSC-educated PD-1PD-L1+ Bregs and their regulatory mechanisms could contribute to the immunosuppressive tumor microenvironment. Our study proposes a novel mechanism for MDSC-mediated regulation of B cell immunity, which might shed new light on tumor immunotherapy.+Subject terms: Breast cancer, Cancer microenvironment  相似文献   

10.
CD4+CD25+Foxp3+ Regulatory T cells (Treg) and programmed death-1 (PD-1) molecules have emerged as pivotal players in immune suppression of chronic diseases. However, their impact on the disease severity, therapeutic response and restoration of immune response in human tuberculosis remains unclear. Here, we describe the possible role of Treg cells, their M. tuberculosis driven expansion and contribution of PD-1 pathway to the suppressive function of Treg cells among pulmonary tuberculosis (PTB) patients. Multicolor flow cytometry, cell culture, cells sorting and ELISA were employed to execute the study. Our results showed significant increase in frequency of antigen-reactive Treg cells, which gradually declined during successful therapy and paralleled with decline of M. tuberculosis–specific IL-10 along with elevation of IFN-γ production, and raising the IFN-γ/IL-4 ratio. Interestingly, persistence of Treg cells tightly correlated with MDR tuberculosis. Also, we show that blocking PD-1/PD-L1 pathway abrogates Treg-mediated suppression, suggesting that the PD-1/PD-L1 pathway is required for Treg-mediated suppression of the antigen-specific T cells. Treg cells possibly play a role in dampening the effector immune response and abrogating PD-1 pathway on Treg cells significantly rescued protective T cell response, suggesting its importance in immune restoration among tuberculosis patients.  相似文献   

11.
Programmed death-1 (PD-1) is a costimulatory molecule of CD28 family expressed onactivated T, B and myeloid cells. The engagement of PD-1 with its two ligands, PD-L1 and PD-L2, inhibitsproliferation of T cell and production of a series of its cytokines. The blockade of PD-1 pathway is involvedin antiviral and antitumoral immunity. In this study, human PD-1 cDNA encoding extracellular domain wasamplified and cloned into expression plasmid pGEX-Sx-3. The fusion protein GST-PD-1 was effectivelyexpressed in E. coli BL21 (DE3) as inclusion bodies and a denaturation and refolding procedure was per-formed to obtain bioactive soluble GST-PD-I. Fusion protein of above 95% purity was acquired by a conve-nient two-step purification using GST affinity and size exclusion columns. Furthermore, a PD-L1-dependentin vitro bioassay method was set up to characterize GST-PD-1 bioactivity. The results suggested that GST-PD-1 could competently block the interaction between PD-Ll and PD-l and increase the production of IL-2 and IFN-γ of phytohemagglutinin-activated T cells.  相似文献   

12.
The programmed death-1 (PD-1) pathway is important in the maintenance of peripheral tolerance and homeostasis through suppression of T cell receptor signaling. As such, it is employed by many tumors as a means of immune escape. We have investigated the role of this pathway in human ovarian cancer (OC) to assess its potential role as a diagnostic and/or prognostic marker and therapeutic target, following recent clinical trial success of antibody therapy directed at this pathway. We show programmed death ligand-1 (PD-L1) expression on monocytes in the ascites and blood of patients with malignant OC is strikingly higher than those with benign/borderline disease, with no overlap in the values between these groups. We characterize the regulation of this molecule and show a role of IL-10 present in ascitic fluid. Flow cytometric analysis of T cells present in the ascites and blood showed a correlation of PD-1 expression with malignant tumors versus benign/borderline, in a similar manner to PD-L1 expression on monocytes. Finally, we demonstrate functional links between PD-L1 expression on monocytes and OC tumor cells with suppression of T cell responses. Overall, we present data based on samples obtained from women with ovarian cancer, suggesting the PD-1 pathway may be used as a reliable diagnostic marker in OC, as well as a viable target for use with PD-1/PD-L1-directed antibody immunotherapy.  相似文献   

13.
Programmed death-1 (PD-1), upon engagement by its ligands, programmed death ligand-1 (PD-L1) and programmed death ligand-2 (PD-L2), provides signals that attenuate adaptive immune responses. Here we describe the identification of the Pekin duck PD-L2 (duPD-L2) and its gene structure. The duPD-L2 cDNA encodes a 321 amino acid protein that has an amino acid identity of 76% and 35% with chicken and human PD-L2, respectively. Mapping of the duPD-L2 cDNA with duck genomic sequences revealed an exonic structure similar to that of the human Pdcd1lg2 gene. Homology modelling of the duPD-L2 protein was compatible with the murine PD-L2 ectodomain structure. Residues known to be important for PD-1 receptor binding of murine PD-L2 were mostly conserved in duPD-L2 within sheets A and G and partially conserved within sheets C and F. DuPD-L2 mRNA was constitutively expressed in all tissues examined with highest expression levels in lung, spleen, cloaca, bursa, cecal tonsil, duodenum and very low levels of expression in muscle, kidney and brain. Lipopolysaccharide treatment of adherent duck PBMC upregulated duPD-L2 mRNA expression. Our work shows evolutionary conservation of the PD-L2 ectodomain structure and residues important for PD-1 binding in vertebrates including fish. The information provided will be useful for further investigation of the role of duPD-L2 in the regulation of duck adaptive immunity and exploration of PD-1-targeted immunotherapies in the duck hepatitis B infection model.  相似文献   

14.
Zhai  Wenjie  Zhou  Xiuman  Zhai  Mingxia  Li  Wanqiong  Ran  Yunhui  Sun  Yixuan  Du  Jiangfeng  Zhao  Wenshan  Xing  Lingxiao  Qi  Yuanming  Gao  Yanfeng 《中国科学:生命科学英文版》2021,64(4):548-562
The interaction of PD-1/PD-L1 allows tumor cells to escape from immune surveillance. Clinical success of the antibody drugs has proven that blockade of PD-1/PD-L1 pathway is a promising strategy for cancer immunotherapy. Here, we developed a cyclic peptide C8 by using Ph.D.-C7 C phage display technology. C8 showed high binding affinity with h PD-1 and could effectively interfere the interaction of PD-1/PD-L1. Furthermore, C8 could stimulate CD8+T cell activation in human peripheral blood mononuclear cells(PBMCs). We also observed that C8 could suppress tumor growth in CT26 and B16-OVA, as well as anti-PD-1 antibody resistant B16 mouse model. CD8+T cells infiltration significantly increased in tumor microenvironment, and IFN-γ secretion by CD8+T cells in draining lymph nodes also increased. Simultaneously, we exploited T cells depletion models and confirmed that C8 exerted anti-tumor effects via activating CD8+T cells dependent manner. The interaction model of C8 with h PD-1 was simulated and confirmed by alanine scanning. In conclusion, C8 shows anti-tumor capability by blockade of PD-1/PD-L1 interaction, and C8 may provide an alternative candidate for cancer immunotherapy.  相似文献   

15.
《Translational oncology》2020,13(10):100811
Programmed cell death-ligand 2 (PD-L2) is one of the two ligands of the programmed cell death-1 (PD-1) receptor, an inhibitory protein mainly expressed on activated immune cells that is targeted in the clinic, with successful and remarkable results. The PD-1/PD-Ls axis was shown to be one of the most relevant immunosuppressive pathways in the immune microenvironment, and blocking this interaction gave rise to an impressive clinical benefit in a broad variety of solid and hematological malignancies. Although PD-L2 has been historically considered a minor ligand, it binds to PD-1 with a two- to six-fold higher affinity as compared to PD-L1. PD-L2 can be expressed by immune, stromal, or tumor cells. The aims of this narrative review are to summarize PD-L2 biology in the physiological responses of the immune system and its role, expression, and clinical significance in cancer.  相似文献   

16.
PD-1 (Programmed cell death protein-1) is mainly expressed in various immune cells, while its ligands PD-L1/PD-L2 (Programmed death ligand-1/Programmed death ligand-2) are mostly expressed in tumor cells. Generally, the binding of PD-L1/PD-L2 and PD-1 could lead to the tumor immune evasion. However, some recent studies showed that PD-1 could also be expressed in tumor cells and could activate mTOR (Mammalian Target of Rapamycin) or Hippo signaling pathway, therefore facilitating tumor proliferation independent of the immune system. While there was evidence that tumor cell-intrinsic PD-1 inhibited the activation of AKT and ERK1/2 pathways, thereby inhibiting tumor cell growth. Based on TCGA and CCLE database, we found that PD-1 was expressed in a variety of tumors and was associated with patient''s prognosis. Besides, we found that PD-1 may be involved in many carcinogenic signaling pathway on the basis of PD-1 gene enrichment analysis of cancer tissues and cancer cells. Our understanding of the tumor cell-intrinsic PD-1 function is still limited. This review is aimed at elaborating the potential effects of tumor cell-intrinsic PD-1 on carcinogenesis, providing a novel insight into the effects of anti-PD-1/PD-L1 immunotherapy, and helping to open a major epoch of combination therapy.  相似文献   

17.
Adoptive cell transfer (ACT), either using rapidly expanded tumor infiltrating lymphocytes or T-cell receptor transduced peripheral blood lymphocytes, can be considered one of the most promising approaches in cancer immunotherapy. ACT results in the repopulation of the host with high frequencies of tumor-specific T cells; however, optimal function of these cells within the tumor micro-environment is required to reach long-term tumor clearance. We and others have shown that ongoing anti-tumor immune responses can be impaired by the expression of ligands, such as PD-L1 (B7-H1) on tumor cells. Such inhibitory molecules can affect T cells at the effector phase via their receptor PD-1. PD-L1/PD-1 interaction has indeed been shown crucial in inducing T-cell anergy and maintaining peripheral tolerance. In order to maximize anti-tumor responses, antibodies that target the PD-1/PD-L1 axis are currently in phase I/II trials. Alternatively, a more refined approach could be the selective targeting of PD-1 in tumor-specific T cells to obtain long-term resistance against PD-1-mediated inhibition. We addressed whether this goal could be achieved by means of retroviral siRNA delivery. Effective siRNA sequences resulting in the reduction of surface PD-1 expression led to improved murine as well as human T-cell immune functions in response to PD-L1 expressing melanoma cells. These data suggest that blockade of PD-1-mediated T-cell inhibition through siRNA forms a promising approach to achieve long-lasting enhancement of tumor-specific T-cell function in adoptive T-cell therapy protocols.  相似文献   

18.

Purpose

Programmed Death-1 (PD-1) and its ligand, PD-L1, are regulators of immune/ inflammatory mechanisms. We explored the potential involvement of PD-1/PD-L1 pathway in the inflammatory response and tissue damage in cardiac injury models.

Experimental Design

Ischemic-reperfused and cryoinjured hearts were processed for flow cytometry and immunohistochemical studies for determination of cardiac PD-1 and PD-L1 in the context of assessment of the growth arrest- and DNA damage-inducible protein 153 (GADD153) which regulates both inflammation and cell death. Further, we explored the potential ability of injured cardiac cells to influence proliferation of T lymphocytes.

Results

The isolated ischemic-reperfused hearts displayed marked increases in expression of PD-1 and PD-L1 in cardiomyocytes; however, immunofluorescent studies indicate that PD-1 and PD-L1 are not primarily co-expressed on the same cardiomyocytes. Upregulation of PD-1/PD-L1 was associated with a) marked increases in GADD153 and interleukin (IL)-17 but a mild increase in IL-10 and b) disruption of mitochondrial membrane potential (ψm) as well as apoptotic and necrotic cell death. Importantly, while isotype matching treatment did not affect the aforementioned changes, treatment with the PD-L1 blocking antibody reversed those effects in association with marked cardioprotection. Further, ischemic-reperfused cardiac cells reduced proliferation of T lymphocytes, an effect partially reversed by PD-L1 antibody. Subsequent studies using the cryoinjury model of myocardial infarction revealed significant increases in PD-1, PD-L1, GADD153 and IL-17 positive cells in association with significant apoptosis/necrosis.

Conclusions

The data suggest that upregulation of PD-1/PD-L1 pathway in cardiac injury models mediates tissue damage likely through a paracrine mechanism. Importantly, inhibition of T cell proliferation by ischemic-reperfused cardiac cells is consistent with the negative immunoregulatory role of PD-1/PD-L1 pathway, likely reflecting an endogenous cardiac mechanism to curtail the deleterious impact of infiltrating immune cells to the damaged myocardium. The balance of these countervailing effects determines the extent of cardiac injury.  相似文献   

19.
Exosomes are bioactive lipid bilayer vesicles released by most cells to mediate intercellular signal communication. Tumor cells release exosomes transmitting signals cell-to-cell and between cells and organs, which will promote tumor angiogenesis, regulate tumor stromal response, immune response, and enhance tumor cells resistance, while exosomes-derived from immune cells in tumor microenvironment play a key role in inhibiting tumor growth and killing tumor cells. Programmed cell death protein 1 (PD-1) combined with Programmed cell death protein ligand 1(PD-L1) can inhibit the activation of T cells, for tumor cells achieve immune escape by overexpressing PD-L1 and binding PD-1 on T cells. The use of anti-PD-1 / PD-L1 antibodies prevents their binding to a certain extent and partially restores T cell's activity. This article mainly discusses the role of exosomal PD-L1 in tumor progression and therapeutic efficacy after application of clinical antibodies, as well as the relation between different reactivity and immunity set points in cancer patients of different races, with different types and at different stages. Besides, we propose that exosomal PD-L1 may become targets for anti-PD-1 / PD-L1 antibody therapy, biomarkers for liquid biopsy, and drug carriers.  相似文献   

20.
A newly identified costimulatory molecule, programmed death-1 (PD-1), provides a negative signal that is essential for immune homeostasis. However, it has been suggested that its ligands, B7-H1 (PD-L1) and B7-dendritic cells (B7-DC; PD-L2), could also costimulate T cell proliferation and cytokine secretion. Here we demonstrate the involvement of PD-1/B7-H1 and B7-DC interaction in the development of colitis. We first examined the expression profiles of PD-1 and its ligands in both human inflammatory bowel disease and a murine chronic colitis model induced by adoptive transfer of CD4(+)CD45RB(high) T cells to SCID mice. Second, we assessed the therapeutic potential of neutralizing anti-B7-H1 and/or B7-DC mAbs using this colitis model. We found significantly increased expression of PD-1 on T cells and of B7-H1 on T, B, and macrophage/DCs in inflamed colon from both inflammatory bowel disease patients and colitic mice. Unexpectedly, the administration of anti-B7-H1, but not anti-B7-DC, mAb after transfer of CD4(+)CD45RB(high) T cells suppressed wasting disease with colitis, abrogated leukocyte infiltration, and reduced the production of IFN-gamma, IL-2, and TNF-alpha, but not IL-4 or IL-10, by lamina propria CD4(+) T cells. These data suggest that the interaction of PD-1/B7-H1, but not PD-1/B7-DC, might be involved in intestinal mucosal inflammation and also show a possible role of interaction between B7-H1 and an as yet unidentified receptor for B7-H1 in inducing T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号