首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
So Young Kim  Leonid S. Brown 《BBA》2008,1777(6):504-513
Proteorhodopsin is photoactive 7-transmembrane protein, which uses all-trans retinal as a chromophore. Proteorhodopsin subfamilies are spectrally tuned in accordance with the depth of habitat of the host organisms, numerous species of marine picoplankton. We try to find residues critical for the spectral tuning through the use of random PCR mutagenesis and endogenous retinal biosynthesis. We obtained 16 isolates with changed color by screening in Escherichia coli with internal retinal biosynthesis system containing genes for beta-carotene biosynthesis and retinal synthase. Some isolates contained multiple substitutions, which could be separated to give 20 single mutations influencing the spectral properties. The color-changing residues are distributed through the protein except for the helix A, and about a half of the mutations is localized on the helices C and D, implying their importance for color tuning. In the pumping form of the pigment, absorption maxima in 8 mutants are red-shifted and in 12 mutants are blue-shifted compared to the wild-type. The results of flash-photolysis showed that most of the low pumping activity mutants possess slower rates of M decay and O decay. These results suggest that the color-tuning residues are not restricted to the retinal binding pocket, in accord with a recent evolutionary analysis.  相似文献   

2.
Kloppmann E  Becker T  Ullmann GM 《Proteins》2005,61(4):953-965
The color tuning mechanism of the rhodopsin protein family has been in the focus of research for decades. However, the structural basis of the tuning mechanism in general and of the absorption shift between rhodopsins in particular remains under discussion. It is clear that a major determinant for spectral shifts between different rhodopsins are electrostatic interactions between the chromophore retinal and the protein. Based on the Poisson-Boltzmann equation, we computed and compared the electrostatic potential at the retinal of three archaeal rhodopsins: bacteriorhodopsin (BR), halorhodopsin (HR), and sensory rhodopsin II (SRII) for which high-resolution structures are available. These proteins are an excellent test case for understanding the spectral tuning of retinal. The absorption maxima of BR and HR are very similar, whereas the spectrum of SRII is considerably blue shifted--despite the structural similarity between these three proteins. In agreement with their absorption maxima, we find that the electrostatic potential is similar in BR and HR, whereas significant differences are seen for SRII. The decomposition of the electrostatic potential into contributions of individual residues, allowed us to identify seven residues that are responsible for the differences in electrostatic potential between the proteins. Three of these residues are located in the retinal binding pocket and have in fact been shown to account for part of the absorption shift between BR and SRII by mutational studies. One residue is located close to the beta-ionone ring of retinal and the remaining three residues are more than 8 A away from the retinal. These residues have not been discussed before, because they are, partly because of their location, no obvious candidates for the spectral shift among BR, HR, and SRII. However, their contribution to the differences in electrostatic potential is evident. The counterion of the Schiff base, which is frequently discussed to be involved in the spectral tuning, does not contribute to the dissimilarities between the electrostatic potentials.  相似文献   

3.
How color visual pigments are tuned.   总被引:1,自引:0,他引:1  
The absorption maximum of the retinal chromophore in color visual pigments is tuned by interactions with the protein (opsin) to which it is bound. Recent advances in the expression of rhodopsin-like transmembrane receptors and in spectroscopic techniques have allowed us to measure resonance Raman vibrational spectra of the retinal chromophore in recombinant visual pigments to examine the molecular basis of this spectral tuning. The dominant physical mechanism responsible for the opsin shift in color vision is the interaction of dipolar amino acid residues with the ground- and excited-state charge distributions of the chromophore.  相似文献   

4.
Organisms utilize light as energy sources and as signals. Rhodopsins, which have seven transmembrane α-helices with retinal covalently linked to a conserved Lys residue, are found in various organisms as distant in evolution as bacteria, archaea, and eukarya. One of the most notable properties of rhodopsin molecules is the large variation in their absorption spectrum. Sensory rhodopsin I (SRI) and sensory rhodopsin II (SRII) function as photosensors and have similar properties (retinal composition, photocycle, structure, and function) except for their λ(max) (SRI, ~560 nm; SRII, ~500 nm). An expression system utilizing Escherichia coli and the high protein stability of a newly found SRI-like protein, SrSRI, enables studies of mutant proteins. To determine the residue contributing to the spectral shift from SRI to SRII, we constructed various SRI mutants, in which individual residues were substituted with the corresponding residues of SRII. Three such mutants of SrSRI showed a large spectral blue-shift (>14 nm) without a large alteration of their retinal composition. Two of them, A136Y and A200T, are newly discovered color tuning residues. In the triple mutant, the λ(max) was 525 nm. The inverse mutation of SRII (F134H/Y139A/T204A) generated a spectral-shifted SRII toward longer wavelengths, although the effect is smaller than in the case of SRI, which is probably due to the lack of anion binding in the SRII mutant. Thus, half of the spectral shift from SRI to SRII could be explained by only those three residues taking into account the effect of Cl(-) binding.  相似文献   

5.
Ion-transporting rhodopsins are widely utilized as optogenetic tools both for light-induced neural activation and silencing. The most studied representative is Bacteriorhodopsin (BR), which absorbs green/red light (∼570 nm) and functions as a proton pump. Upon photoexcitation, BR induces a hyperpolarization across the membrane, which, if incorporated into a nerve cell, results in its neural silencing. In this study, we show that several residues around the retinal chromophore, which are completely conserved among BR homologs from the archaea, are involved in the spectral tuning in a BR homolog (HwBR) and that the combination mutation causes a large spectral blue shift (λmax = 498 nm) while preserving the robust pumping activity. Quantum mechanics/molecular mechanics calculations revealed that, compared with the wild type, the β-ionone ring of the chromophore in the mutant is rotated ∼130° because of the lack of steric hindrance between the methyl groups of the retinal and the mutated residues, resulting in the breakage of the π conjugation system on the polyene chain of the retinal. By the same mutations, similar spectral blue shifts are also observed in another BR homolog, archearhodopsin-3 (also called Arch). The color variant of archearhodopsin-3 could be successfully expressed in the neural cells of Caenorhabditis elegans, and illumination with blue light (500 nm) led to the effective locomotory paralysis of the worms. Thus, we successfully produced a blue-shifted proton pump for neural silencing.  相似文献   

6.
To study their role in proton translocation by bacteriorhodopsin, 22 serine and threonine residues presumed to be located within and near the border of the transmembrane segments have been individually replaced by alanine or valine, respectively. Thr-89 was substituted by alanine, valine, and aspartic acid, and Ser-141 by alanine and cysteine. Most of the mutants showed essentially wild-type phenotype with regard to chromophore regeneration and absorption spectrum. However, replacement of Thr-89 by Val and of Ser-141 by Cys caused striking blue shifts of the chromophore by 100 and 80 nm, respectively. All substitutions of Thr-89 regenerated the chromophore at least 10-fold faster with 13-cis retinal than with all-trans retinal. The substitutions at positions 89, 90, and 141 also showed abnormal dark-light adaptation, suggesting interactions between these residues and the retinylidene chromophore. Proton pumping measurements revealed 60-75% activity for mutants of Thr-46, -89, -90, -205, and Ser-226, and about 20% for Ser-141----Cys, whereas the remaining mutants showed normal pumping. Kinetic studies of the photocycle and of proton release and uptake for mutants in which proton pumping was reduced revealed generally little alterations. The reduced activity in several of these mutants is most likely due to a lower percentage of all-trans retinal in the light-adapted state. In the mutants Thr-46----Val and Ser-226----Ala the decay of the photointer-mediate M was significantly accelerated, indicating an interaction between these residues and Asp-96 which reprotonates the Schiff base. Our results show that no single serine or threonine residue is obligatory for proton pumping.  相似文献   

7.
Anabaena sensory rhodopsin is a seven transmembrane protein that uses all-trans/13-cis retinal as a chromophore. About 22 residues in the retinal-binding pocket of microbial rhodopsins are conserved and important to control the quality of absorbing light and the function of ion transport or sensory transduction. The absorption maximum is 550 nm in the presence of all-trans retinal at dark. Here, we mutated Pro206 to Glu or Asp, of which the residue is conserved as Asp among all other microbial rhodopsins, and the absorption maximum and pKa of the proton acceptor group were measured by absorption spectroscopy at various pHs. Anabaena rhodopsin was expressed best in Escherichia coli in the absence of extra leader sequence when exogenous all-trans retinal was added. The wild-type Anabaena rhodopsin showed small absorption maximum changes between pH 4 and 11. In addition, Pro206Asp showed 46 nm blue-shift at pH 7.0. Pro206Glu or Asp may change the contribution to the electron distribution of the retinal that is involved in the major role of color tuning for this pigment. The critical residue Ser86 (Asp 96 position in bacteriorhodopsin: proton donor) for the pumping activity was replaced with Asp, but it did not change the proton pumping activity of Anabaena rhodopsin.  相似文献   

8.
Bacteriorhodopsin (BR) is a retinal protein that functions as a light-driven proton pump. In this study, six novel mutants including K41E and D102K, were obtained to verify or rule out the possibility that residues Lys41 and Asp102 are determinants of the time order of proton release and uptake, because we found that the order was reversed in another retinal protein archaerhodopsin 4 (AR4), which had different 41th and 102th residues. Our results rule out that possibility and confirm that the pK(a) of the proton release complex (PRC) determines the time order. Nevertheless, mutations, especially D102K, were found to affect the kinetics of proton uptake substantially and the pK(a) of Asp96. Compared to the wild-type BR (BR-WT), the decay of the M intermediate and proton uptake in the photocycle was slowed about 3-fold in D102K. Hence those residues might be involved in proton uptake and delivery to the internal proton donor.  相似文献   

9.
Vision is a major sense for Primates and the ability to perceive colors has great importance for the species ecology and behavior. Visual processing begins with the activation of the visual opsins in the retina, and the spectral absorption peaks are highly variable among species. In most Primates, LWS/MWS opsins are responsible for sensitivity to long/middle wavelengths within the visible light spectrum, and SWS1 opsins provide sensitivity to short wavelengths, in the violet region of the spectrum. In this study, we aimed to investigate the genetic variation on the sws1 opsin gene of New World monkeys (NWM) and search for amino acid substitutions that might be associated with the different color vision phenotypes described for a few species. We sequenced the exon 1 of the sws1 opsin gene of seven species from the families Callitrichidae, Cebidae, and Atelidae, and searched for variation at the spectral tuning sites 46, 49, 52, 86, 90, 93, 114, 116, and 118. Among the known spectral tuning sites, only residue 114 was variable. To investigate whether other residues have a functional role in the SWS1 absorption peak, we performed computational modeling of wild-type SWS1 and mutants A50I and A50V, found naturally among the species investigated. Although in silico analysis did not show any visible effect caused by these substitutions, it is possible that interactions of residue 50 with other sites might have some effect in the spectral shifts in the order of ~14 nm, found among the NWM. We also performed phylogenetic reconstruction of the sws1 gene, which partially recovered the species phylogeny. Further studies will be important to uncover the mutations responsible for the phenotypic variability of the SWS1 of NWM, and how spectral tuning may be associated with specific ecological features such as preferred food items and habitat use.  相似文献   

10.
Bacteriorhodopsin (BR) is a retinal protein that functions as a light-driven proton pump. In this study, six novel mutants including K41E and D102K, were obtained to verify or rule out the possibility that residues Lys41 and Asp102 are determinants of the time order of proton release and uptake, because we found that the order was reversed in another retinal protein archaerhodopsin 4 (AR4), which had different 41th and 102th residues. Our results rule out that possibility and confirm that the pK a of the proton release complex (PRC) determines the time order. Nevertheless, mutations, especially D102K, were found to affect the kinetics of proton uptake substantially and the pK a of Asp96. Compared to the wild-type BR (BR-WT), the decay of the M intermediate and proton uptake in the photocycle was slowed about 3-fold in D102K. Hence those residues might be involved in proton uptake and delivery to the internal proton donor.  相似文献   

11.
Previous mutagenesis studies with bacteriorhodopsin have shown that reprotonation of the Schiff's base is the rate-limiting step in the photocycle of the D96N mutant, whereas retinal re-isomerization and return of the protein to the initial state constitute the rate-limiting events in the photocycle of the L93A mutant. Thus, in the D96N mutant, decay of the M intermediate is slowed down by more than 100-fold at pH 7. In the L93A mutant, decay of the O intermediate is slowed down by 250-fold. We report here that in the L93A, D96N double mutant, decay of the M intermediate, as well as the formation and decay of the O intermediate, are slowed down dramatically. The photocycle is completed by the decay of a long-lived O intermediate, as in the L93A mutant. The decay of the M and O intermediates in the double mutant parallels the behavior seen in the single mutants over a wide temperature and pH range, arguing that the observed independence is an intrinsic property of the mutant. The slow decay of the M and O intermediates can be selectively and independently reversed under conditions identical to those used for the corresponding intermediates in the D96N and L93A single mutants. Because the effects of the two individual mutations are preserved in the double mutant and can be independently reversed, we conclude that residues Asp 96 and Leu 93 act independently and at different stages of the bacteriorhodopsin photocycle. These results also show that formation of the O intermediate only requires protonation of the Schiff's base and is independent of the protonation of Asp 96 from the aqueous medium.  相似文献   

12.
Maiti TK  Yamada K  Inoue K  Kandori H 《Biochemistry》2012,51(15):3198-3204
Proteorhodopsin (PR) is a light-driven proton pump found in marine bacteria. Thousands of PRs are classified into blue-absorbing (λ(max) ~ 490 nm) and green-absorbing (λ(max) ~ 525 nm) PR, and the color determinant is known to be at position 105, where blue-absorbing and green-absorbing PR possess Gln and Leu, respectively. Position 105 is in contact with the retinal chromophore in the hydrophobic region of the cytoplasmic side. In this paper, we have introduced a positively charged lysine group at position 105, which is the first report of the introduction of a positively charged group into the hydrophobic cytoplasmic domain in microbial rhodopsins. The L105K mutant PR shows an ~21 nm red shift (λ(max) ~ 549 nm) at pH 7.0, and the pK(a) of the counterion (7.2) does not change significantly compared to that of wild-type PR (6.8). The analysis of thermal stability shows that the mutation causes some destabilization of structure, but the mutant is more stable toward hydroxylamine reaction than the wild type. The flash photolysis measurement at pH 9.0 shows that the decay of the M intermediate of L105K is ~3 times slower than that of the wild type. The slow M decay possibly originates from the perturbation of the proton donor (Glu108) and the retinal Schiff base due to positioning of a positively charged lysine group in the proton transfer pathway. The perturbation of proton transport is also observed when we measure light-induced proton pumping. The rate of proton transport in L105K mutant is 6 times slower than that of the wild type, which corroborates our flash photolysis result.  相似文献   

13.
Aequorin is a photoprotein that emits light upon binding calcium. Aequorin mutants showing increased intensity or slow decay of bioluminescence were isolated by in vitro evolution combining DNA shuffling and functional screening in bacteria. Luminescence decay mutants were isolated at the first round of screening and carried mutations located in EF-hand calcium binding sites or their vicinity. During in vitro evolution, the luminescence intensity of the population of mutants increased with the frequency of effective mutations whereas the frequency of other amino acid substitutions remained roughly stable. Luminescence intensity mutations neighbored the His-16 or His-169 coelenterazine binding residues or were located in the first EF-hand. None of the selected mutants exhibited an increase in photon yield when examined in a cell-free assay. However, we observed that two mutants, Q168R and L170I, exhibited an increase of the photoprotein lifetime at 37 degrees C that may underlie their high luminescence intensity in bacteria. Further analysis of Q168R and L170I mutations showed that they increased aequorin thermostability. Conversely, examination of luminescence decay mutants revealed that the F149S substitution decreased aequorin thermostability. Finally, screening of a library of random Gln-168 and Leu-170 mutants confirmed the involvement of both positions in thermostability and indicated that optimal thermostability was conferred by Q168R and L170I mutations selected through in vitro evolution. Our results suggest that Phe-149 and Gln-168 residues participate in stabilization of the coelenterazine peroxide and the triggering of photon emission by linking the third EF-hand to Trp-129 and His-169 coelenterazine binding residues.  相似文献   

14.
The pleuromutilin antibiotic tiamulin binds to the ribosomal peptidyl transferase centre. Three groups of Brachyspira spp. isolates with reduced tiamulin susceptibility were analysed to define resistance mechanisms to the drug. Mutations were identified in genes encoding ribosomal protein L3 and 23S rRNA at positions proximal to the peptidyl transferase centre. In two groups of laboratory-selected mutants, mutations were found at nucleotide positions 2032, 2055, 2447, 2499, 2504 and 2572 of 23S rRNA (Escherichia coli numbering) and at amino acid positions 148 and 149 of ribosomal protein L3 (Brachyspira pilosicoli numbering). In a third group of clinical B. hyodysenteriae isolates, only a single mutation at amino acid 148 of ribosomal protein L3 was detected. Chemical footprinting experiments show a reduced binding of tiamulin to ribosomal subunits from mutants with decreased susceptibility to the drug. This reduction in drug binding is likely the resistance mechanism for these strains. Hence, the identified mutations located near the tiamulin binding site are predicted to be responsible for the resistance phenotype. The positions of the mutated residues relative to the bound drug advocate a model where the mutations affect tiamulin binding indirectly through perturbation of nucleotide U2504.  相似文献   

15.
Bacteriorhodopsin contains 8 tryptophan residues distributed across the membrane-embedded helices. To study their possible functions, we have replaced them one at a time by phenylalanine; in addition, Trp-137 and -138 have been replaced by cysteine. The mutants were prepared by cassette mutagenesis of the synthetic bacterio-opsin gene, expression and purification of the mutant apoproteins, renaturation, and chromophore regeneration. The replacement of Trp-10, Trp-12 (helix A), Trp-80 (helix C), and Trp-138 (helix E) by phenylalanine and of Trp-137 and Trp-138 by cysteine did not significantly alter the absorption spectra or affect their proton pumping. However, substitution of the remaining tryptophans by phenylalanine had the following effects. 1) Substitution of Trp-86 (helix C) and Trp-137 gave chromophores blue-shifted by 20 nm and resulted in reduced proton pumping to about 30%. 2) As also reported previously (Hackett, N. R., Stern, L. J., Chao, B. H., Kronis, K. A., and Khorana, H. G. (1987) J. Biol. Chem. 262, 9277-9284), substitution of Trp-182 and Trp-189 (helix F) caused large blue shifts (70 and 40 nm, respectively) in the chromophore and affected proton pumping. 3) The substitution of Trp-86 and Trp-182 by phenylalanine conferred acid instability on these mutants. The spectral shifts indicate that Trp-86, Trp-182, Trp-189, and possibly Trp-137 interact with retinal. It is proposed that these tryptophans, probably along with Tyr-57 (helix B) and Tyr-185 (helix F), form a retinal binding pocket. We discuss the role of tryptophan residues that are conserved in bacteriorhodopsin, halorhodopsin, and the related family of opsin proteins.  相似文献   

16.
Millisecond photocycle kinetics were measured at room temperature for 13 site-specific bacteriorhodopsin mutants in which single aspartic acid residues were replaced by asparagine, glutamic acid, or alanine. Replacement of aspartic acid residues expected to be within the membrane-embedded region of the protein (Asp-85, -96, -115, or -212) produced large alterations in the photocycle. Substitution of Asp-85 or Asp-212 by Asn altered or blocked formation of the M410 photointermediate. Substitution of these two residues by Glu decreased the amount of M410 formed. Substitutions of Asp-96 slowed the decay rate of the M410 photointermediate, and substitutions of Asp-115 slowed the decay rate of the O640 photointermediate. Corresponding substitutions of aspartic acid residues expected to be in cytoplasmic loop regions of the protein (Asp-36, -38, -102, or -104) resulted in little or no alteration of the photocycle. Our results indicate that the defects in proton pumping which we have previously observed upon substitution of Asp-85, Asp-96, Asp-115, and Asp-212 [Mogi, T., Stern, L. J., Marti, T., Chao, B. H., & Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 4148-4152] are closely coupled to alterations in the photocycle. The photocycle alterations observed in these mutants are discussed in relation to the functional roles of specific aspartic acid residues at different stages of the bacteriorhodopsin photocycle and the proton pumping mechanism.  相似文献   

17.
The Saccharomyces cerevisiae F1-ATPase beta subunit precursor contains redundant mitochondrial protein import information at its NH2 terminus (D. M. Bedwell, D. J. Klionsky, and S. D. Emr, Mol. Cell. Biol. 7:4038-4047, 1987). To define the critical sequence and structural features contained within this topogenic signal, one of the redundant regions (representing a minimal targeting sequence) was subjected to saturation cassette mutagenesis. Each of 97 different mutant oligonucleotide isolates containing single (32 isolates), double (45 isolates), or triple (20 isolates) point mutations was inserted in front of a beta-subunit gene lacking the coding sequence for its normal import signal (codons 1 through 34 were deleted). The phenotypic and biochemical consequences of these mutations were then evaluated in a yeast strain deleted for its normal beta-subunit gene (delta atp2). Consistent with the lack of an obvious consensus sequence for mitochondrial protein import signals, many mutations occurring throughout the minimal targeting sequence did not significantly affect its import competence. However, some mutations did result in severe import defects. In these mutants, beta-subunit precursor accumulated in the cytoplasm, and the yeast cells exhibited a respiration defective phenotype. Although point mutations have previously been identified that block mitochondrial protein import in vitro, a subset of the mutations reported here represents the first single missense mutations that have been demonstrated to significantly block mitochondrial protein import in vivo. The previous lack of such mutations in the beta-subunit precursor apparently relates to the presence of redundant import information in this import signal. Together, our mutants define a set of constraints that appear to be critical for normal activity of this (and possibly other) import signals. These include the following: (i) mutant signals that exhibit a hydrophobic moment greater than 5.5 for the predicted amphiphilic alpha-helical conformation of this sequence direct near normal levels of beta-subunit import (ii) at least two basic residues are necessary for efficient signal function, (iii) acidic amino acids actively interfere with import competence, and (iv) helix-destabilizing residues also interfere with signal function. These experimental observations provide support for mitochondrial protein import models in which both the structure and charge of the import signal play a critical role in directing mitochondrial protein targeting and import.  相似文献   

18.
Proton transfers in the photochemical reaction cycle of proteorhodopsin   总被引:2,自引:0,他引:2  
The spectral and photochemical properties of proteorhodopsin (PR) were determined to compare its proton transport steps to those of bacteriorhodopsin (BR). Static and time-resolved measurements on wild-type PR and several mutants were done in the visible and infrared (FTIR and FT-Raman). Assignment of the observed C=O stretch bands indicated that Asp-97 and Glu-108 serve as the proton acceptor and donor, respectively, to the retinal Schiff base, as do the residues at corresponding positions in BR, but there are numerous spectral and kinetic differences between the two proteins. There is no detectable dark-adaptation in PR, and the chromophore contains nearly entirely all-trans retinal. Because the pK(a) of Asp-97 is relatively high (7.1), the proton-transporting photocycle is produced only at alkaline pH. It contains at least seven transient states with decay times in the range from 10 micros to 200 ms, but the analysis reveals only three distinct spectral forms. The first is a red-shifted K-like state. Proton release does not occur during the very slow (several milliseconds) rise of the second, M-like, intermediate, consistent with lack of the residues facilitating extracellular proton release in BR. Proton uptake from the bulk, presumably on the cytoplasmic side, takes place prior to release (tau approximately 2 ms), and coincident with reprotonation of the retinal Schiff base. The intermediate produced by this process contains 13-cis retinal as does the N state of BR, but its absorption maximum is red-shifted relative to PR (like the O state of BR). The decay of this N-like state is coupled to reisomerization of the retinal to all-trans, and produces a state that is O-like in its C-C stretch bands, but has an absorption maximum apparently close to that of unphotolyzed PR.  相似文献   

19.
The second extracellular loop of rhodopsin folds back into the membrane-embedded domain of the receptor to form part of the binding pocket for the 11-cis-retinylidene chromophore. A carboxylic acid side chain from this loop, Glu181, points toward the center of the retinal polyene chain. We studied the role of Glu181 in bovine rhodopsin by characterizing a set of site-directed mutants. Sixteen of the 19 single-site mutants expressed and bound 11-cis-retinal to form pigments. The lambda(max) value of mutant pigment E181Q showed a significant spectral red shift to 508 nm only in the absence of NaCl. Other substitutions did not significantly affect the spectral features of the mutant pigments in the dark. Thus, Glu181 does not contribute significantly to spectral tuning of the ground state of rhodopsin. The most likely interpretation of these data is that Glu181 is protonated and uncharged in the dark state of rhodopsin. The Glu181 mutants displayed significantly increased reactivity toward hydroxylamine in the dark. The mutants formed metarhodopsin II-like photoproducts upon illumination but many of the photoproducts displayed shifted lambda(max) values. In addition, the metarhodopsin II-like photoproducts of the mutant pigments had significant alterations in their decay rates. The increased reactivity of the mutants to hydroxylamine supports the notion that the second extracellular loop prevents solvent access to the chromophore-binding pocket. In addition, Glu181 strongly affects the environment of the retinylidene Schiff base in the active metarhodopsin II photoproduct.  相似文献   

20.
G protein-coupled receptor (GPCR) activation mediated by ligand-induced structural reorganization of its helices is poorly understood. To determine the universal elements of this conformational switch, we used evolutionary tracing (ET) to identify residue positions commonly important in diverse GPCRs. When mapped onto the rhodopsin structure, these trace residues cluster into a network of contacts from the retinal binding site to the G protein-coupling loops. Their roles in a generic transduction mechanism were verified by 211 of 239 published mutations that caused functional defects. When grouped according to the nature of the defects, these residues sub-divided into three striking sub-clusters: a trigger region, where mutations mostly affect ligand binding, a coupling region near the cytoplasmic interface to the G protein, where mutations affect G protein activation, and a linking core in between where mutations cause constitutive activity and other defects. Differential ET analysis of the opsin family revealed an additional set of opsin-specific residues, several of which form part of the retinal binding pocket, and are known to cause functional defects upon mutation. To test the predictive power of ET, we introduced novel mutations in bovine rhodopsin at a globally important position, Leu-79, and at an opsin-specific position, Trp-175. Both were functionally critical, causing constitutive G protein activation of the mutants and rapid loss of regeneration after photobleaching. These results define in GPCRs a canonical signal transduction mechanism where ligand binding induces conformational changes propagated through adjacent trigger, linking core, and coupling regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号