首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
实验用鱼为全长35.5~40.0 cm的野生鲻(Mugil cephalus),采用石蜡切片以及透射电镜技术对鲻的嗅囊以及嗅板细胞进行观察。结果表明:鲻的嗅觉器官由左右两个呈扁平椭球形嗅囊构成,分别由前后两个鼻孔与外界相通。嗅囊长径与眼径之比为0.80,长径与短径之比为2.09。嗅囊的嗅轴左右两边分别有垂直于嗅轴并向上倾斜排列整齐的18~25个披针形嗅板,只有初级嗅板未见次级嗅板。嗅板由中央髓和两侧的嗅上皮两部分构成,中央髓由疏松的结缔组织和毛细血管组成。嗅上皮又分为感觉区和非感觉区,感觉区位于嗅板的内侧,具有发达纤毛,呈连续分布状态,非感觉区位于嗅板边缘,细胞纤毛较少。通过光镜和电镜的综合研究结果显示嗅上皮细胞大致可分为5类:基细胞、支持细胞、纤毛非感觉细胞、纤毛感觉细胞和柱状细胞。文章讨论了鲻的感官活动类型。  相似文献   

2.
The surface architecture of the olfactory rosette ofHeteropneustes fossilis (Bloch) has been studied by scanning electron microscopy. The olfactory rosette is an oval structure composed of a number of lamellae arranged pinnately on a median raphe. The raphe is invested with epithelial cells and pits which represent goblet cell openings. On the basis of cellular characteristics and their distribution the lateral surface of each olfactory lamella is identified as sensory, ciliated non-sensory and non-ciliated non-sensory epithelium. The sensory epithelium is provided with receptor and supporting cells. The ciliated non-sensory epithelium is covered with dense cilia obscuring the presence of other cell types. The non-ciliated non-sensory epithelium is with many polygonal areas containing cells.  相似文献   

3.
The olfactory lamellae of the catfish H. fossilis (Bl.) was studied in the scanning electron microscope. The olfactory lamellae are composed of sensory and non-sensory epithelium. The sensory epithelium contains large numbers of ciliated receptor cells, whereas the non-sensory raphe epithelium is covered with a dense mat of non-sensory cilia. It is not known whether the olfactory cilia possess receptor sites.  相似文献   

4.
The untrastructural organization of the olfactory epithelium of the cod Gadus morhua (L.) and the haddock Melanogrammus aeglefinus (L.) was studied using both transmission and scanning electron microscopy. The olfactory rosette was found to exhibit regional differences; the faces of the olfactory lamella were composed of sensory epithelium, the edges were non-sensory. The cellular organization of the olfactory epithelium was determined and consisted of bi-polar sensory neurones, supporting cells, mucous cells and basal cells. The ultrastructure of the sensory cells was consistent, having an elongate cell, the free surface of which terminated in an olfactory vesicle from which arose either four olfactory cilia or numerous microvilli. Ciliary aggregations have been found in the two species of gadoid fish studied; it is suggested that these structures aid in the separation and in the circulation of fluid between the lamellae. The surface structure of the supporting cells was found to be of two types: either ciliated or ridged; the former presenting distinct ciliated tufts, the latter showing definite, but unorganized, ridges over the epithelium surface.  相似文献   

5.
中华须鳗嗅觉器官形态学观察   总被引:2,自引:1,他引:1  
利用光学显微镜和扫描电镜观察了10尾不同体长中华须鳗嗅觉器官的结构.结果表明:中华须鳗嗅囊呈楔型;嗅囊膜和嗅囊腹面的透明膜共同围成嗅囊腔;嗅囊长径与眼径的平均比值为2.2倍;每侧嗅囊嗅板数变化范围在30~44之间;嗅板远轴端有一纤毛和嗅孔密集的舌状游离突;嗅板上皮纤毛密集,纤毛细胞表现为3种类型:纤毛感觉细胞、纤毛非感觉细胞和微绒毛感觉细胞;纤毛非感觉细胞和微绒毛细胞也出现在嗅囊壁.嗅板上大量的纤毛表明,中华须鳗嗅囊的水动力机制应属嗅板纤毛搅动型(isosmates).除观察到嗅囊壁表面有两种类型的微嵴外,还首次在嗅板上观察到一种呈荸荠状的杆状细胞.  相似文献   

6.
The effects of exposure to sublethal concentrations (1.5 and 3 mg l(-1)) of sodium dodecylbenzene sulphonate on the olfactory epithelium of Ictalurus melas Rafinesque were examined by light and scanning electron microscopy. The detergent affected the superficial part of each olfactory lamella and different morphological alterations, depending on dose and duration of treatment, were observed. The histology and surface morphology of sensory and non-sensory areas of the epithelium of fish treated with 1.5 mg l(-1) for 5 and 10 d were not affected by the treatment, while only an incipient thinning-out of the long cilia of non-sensory epithelium was seen in fish treated for 15 d. Treatment with 3 mg l(-1) caused morphological alterations, related to the time of exposure, in the non-sensory and sensory epithelium, consisting of progressive thinning of cellular projections; this treatment also increased mucus production. These observed histopathological changes in the olfactory mucosa may modify the olfactory perception of the fish, and could thereby impair important physiological functions such as feeding, social interactions or migration.  相似文献   

7.
Summary Scanning electron microscopy has been employed to study the central axis and laminae of the olfactory rosette in adult sea trout (Salmo trutta trutta L.) caught in the River Umeälven when they were homing from sea.—Both flat sides of the primary laminae are secondarily folded all over their surface. In one organ there are about 200 secondary laminae usually arranged in longitudinal, parallel ridges crossing the surface of the primary laminae. Initially they are covered with sensory epithelium, but as the folds grow they become covered with an increasing area of indifferent ciliar epithelium with bushes of cilia separated by microvilli cells and goblet cells. Parts of the central axis and primary laminae have a nonciliar indifferent epithelium. The sensory epithelium has irregularly arranged cilia. Like those of the indifferent epithelium they have uniform thickness and granulated surface. The function of laminae, secretion and cilia is discussed.The author wish to acknowledge the technical facilities and assistance in the use of the scanning electron microscope to Jeolco Stockholm office. This research was supported by grants 2389-10, 2389-11 and 2389-13 from the Swedish Natural Science Research Council.  相似文献   

8.
Summary The olfactory epithelium of the three-spined stickleback (Gasterosteus aculeatus) and the nine-spined stickleback (Pungitius pungitius) has been studied with a conventional histochemical and a novel immunological staining technique. In both species, the sensory epithelium is arranged in folds separated by non-sensory epithelial tissue. In the nine-spined stickleback, intrinsic folds consisting of non-sensory cells are found in the apical part of the sensory epithelium where they divide the surface of the sensory epithelium into small islets. These non-sensory cells are non-ciliated, flattened and piled on top of each other; they contain numerous electron-translucent vesicles. The intrinsic folds are absent from the sensory epithelium of the three-spined stickleback. In both species, axons of receptor cells form a layer of fibers in the sensory epithelium immediately above the basal cells. In the three-spined stickleback, thick branches of the olfactory nerve are frequently found in this layer. These branches are only occasionally observed in the sensory epithelium of the nine-spined stickleback. Thus, the three-spined stickleback and the nine-spined stickleback show considerable differences in the organization of the sensory regions of the olfactory epithelium.  相似文献   

9.
10.
Catla catla, Labeo rohita, and Cirrhinus mrigala are important alimentary fish in India. Their reproduction (breeding) depends on season. The fish perceive external factors-stimuli and chemical signals through the olfactory system that plays the key role in the central regulation of reproduction. However, in the available literature, any electron microscopy data on organization of olfactory elements in these fish are absent. We have studied ultrastructure of the olfactory organ in male L. rohita by using scanning (SEM) and transmission electron microscopy (TEM). The olfactory organ consists of olfactory epithelium, a short nerve, and olfactory bulb. The organ has oval shape and consists of approximately 47-52 lamellae in adult fish and of 14-20 lamellae in fish at the stage of fingerling. These lamellae originate from the midline raphe. By using SEM, the presence of microvillar sensory and ciliated non-sensory cells in these lamellae is shown. By using TEM, a microvillar receptor cell is revealed, which has rough endoplasmic reticulum and Golgi apparatus towards the apical end. Basal cells are found at the base of the receptor cell; supporting cells are located adjacent to olfactory receptor neurons, while epithelial cells--in the non-sensory part of olfactory epithelium. Mast, blastema and macrophages cells are also found in the basal lamina. This work is the first publication on structural organization of olfactory system of the Indian major carp, which provides information about morphological and ultrastructural organization of olfactory system and opens new opportunities for study of chemical neuroanatomy, sensory signal processing, and nervous regulation of reproduction of the Indian major carp.  相似文献   

11.
Receptors for olfactory stimulus molecules appear to be located at the surface of olfactory receptor cells. The ultrastructure of the distal region of rainbow trout (Salmo gairdneri) olfactory epithelium was examined by transmission electron microscopy. On the sensory olfactory epithelium, which occurs in the depressions of secondary folds of the lamellae of the rosettes, five cell types were present. Type I cells have a knob-like apical projection which is unique in this species because it frequently contains cilia axonemes within its cytoplasm in addition to being surrounded by cilia. Type II cells bear many cilia oriented unidirectionally on a wide, flat surface. Type III cells have microvilli on a constricted apical surface and centrioles in the subapical cytoplasm. Type IV cells contain a rod-like apical projection filled with a bundle of filaments, and type V cells are supporting cells. Cilia on the sensory epithelium contain the 9 + 2 microtubule fiber pattern. Dynein arms are clearly present on the outer doublet fibers, which suggests that the cilia in the olfactory region are motile. Their presence in olfactory cilia of vertebrates has been controversial. The cilia membrane in this species is unusual in often showing outfoldings, within which are included small, irregular vesicles or channels. In addition, cilia on type II cells frequently contain dense-staining bodies closely apposed to the membranes, along with a densely stained crown at the cilia tip. Previous biochemical evidence indicates that odorant receptors are associated with the cilia.  相似文献   

12.
This study investigated the relationship between olfactory morphology, habitat occupancy, and lifestyle in 21 elasmobranch species in a phylogenetic context. Four measures of olfactory capability, that is, the number of olfactory lamellae, the surface area of the olfactory epithelium, the mass of the olfactory bulb, and the mass of the olfactory rosette were compared between individual species and groups, comprised of species with similar habitat and/or lifestyle. Statistical analyses using generalized least squares phylogenetic regression revealed that bentho‐pelagic sharks and rays possess significantly more olfactory lamellae and larger sensory epithelial surface areas than benthic species. There was no significant correlation between either olfactory bulb or rosette mass and habitat type. There was also no significant difference between the number of lamellae or the size of the sensory surface area in groups comprised of species with similar diets, that is, groups preying predominantly on crustaceans, cephalopods, echinoderms, polychaetes, molluscs, or teleosts. However, some groups had significantly larger olfactory bulb or rosette masses than others. There was little evidence to support a correlation between phylogeny and morphology, indicating that differences in olfactory capabilities are the result of functional rather than phylogenetic adaptations. All olfactory epithelia exhibited microvilli and cilia, with microvilli in both nonsensory and sensory areas, and cilia only in sensory areas. Cilia over the sensory epithelia originated from supporting cells. In contrast to teleosts, which possess ciliated and microvillous olfactory receptor types, no ciliated olfactory receptor cells were observed. This is the first comprehensive study comparing olfactory morphology to several aspects of elasmobranch ecology in a phylogenetic context. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
The morphology of the olfactory organs in two sharks, the spiny dogfish and the small-spotted catshark, was studied by light microscopy and electron microscopy (TEM and SEM). The olfactory epithelium is arranged on olfactory lamellae which are provided with secondary folds. The epithelium mainly consists of microvillous receptor cells, multiciliated supporting cells and basal cells. The find of only one type of receptor cells, the microvillous type, is discussed and the condition considered a derived (apomorphic) character. The route of the water current through the olfactory organ and the different driving forces of the ventilation process are subject to discussion. In both the pelagic dogfish and the bottom-dwelling catshark the pressure difference between the incurrent and excurrent nostrils achieved by active swimming appears to be the driving force, whereas the role of the beating of the non-sensory cilia is not evident. In the bottom-dwelling catshark the ventilation of the olfactory organ is also supported by the respiratory activity.  相似文献   

14.
吴孝彬  陈壁辉 《动物学报》1992,38(2):118-123
本文通过光镜和扫描电镜研究了爬行动物扬子鳄鼻腔上皮的组织学。结果表明:其嗅觉上皮的组成细胞类型与两栖类、鸟类和哺乳类基本相似,但嗅细胞纤毛形状则有所不同;扬子鳄与两栖类、鸟类嗅纤毛相似,呈丝状,而哺乳类嗅觉纤毛则呈棍棒状;据外,扬子鳄鼻腔不同部位可发现不同类型嗅纤毛,鸟兽则无此现象,扬子鳄嗅觉上皮的分布仅局限于鼻腔中部前甲区和鼻甲区狭小范围,而兽类嗅觉上皮一般分布较广;扬子鳄呼吸上皮下未见兽类具有的混合型粘液腺,也未见兽类用以温暖空气的静脉丛,这和扬子鳄属外温动物而兽类为恒温动物密切相关。  相似文献   

15.
The necrotic effect of various salt solutions was tested on the catfish olfactory mucosa. Only zinc cations were able to induce an extensive degeneration of the olfactory cells. Two different modes of irrigation of the mucosa with zinc sulfate were investigated. (1) The olfactory cavity is flushed with the chemical for not more than a few seconds. At concentrations above 30 mM, the resulting damage is very reproducible, largely concentration independent and almost completely specific for the olfactory receptor cells. The non-sensory respiratory cells are unaffected, the sustentacular cells surrounding the receptor cells are affected mainly by a loss of microvilli. The olfactory receptor cells, on the contrary, start to degenerate within a few hours and by day 4 only 20% of the original receptor population remains. Division of the mucosal basal cells increases during days 3 and 4 on and day 6 olfactory receptor cells reach the bare surface of the lamella. After day 7, the receptor population reaches a level of more than 80% of its original value. Because of the absence of sustentacular processes covering the olfactory cell's knobs on day 6, it has been possible to confirm that each of the two types of olfactory receptor cells previously characterized are concentrated on each half of the mucosa. (2) The salt is maintained in contact with the tissue for several days. After this treatment most of the lamellae are irreversibly destroyed, some regeneration occurs in limited areas of the mucosa. In these small areas, indifferent respiratory cells reappear first between 20 and 35 days. It is only when the structure of the olfactory tissue is completely reorganized that the new receptor cells reappear between days 45 and 55. Regeneration is not completed before 60–65 days.  相似文献   

16.
Catla catla, Labeo rohita, and Cirrhinus mrigala represent important alimentary fish in India. Their reproduction/breeding depends on seasons. Fish perceive external factors-stimuli and chemical signals through the olfactory system that plays the key role in central regulation of reproduction. However, no electron microscopy data are available on organization of olfactory components of these fish. We studied organization of the olfactory organ in male L. rohita using scanning (SEM) and transmission electron microscopy (TEM). This organ consists of olfactory epithelium, a short nerve, and olfactory bulb. The olfactory organ is ovoid in shape and consists of about 47–52 lamellae in adults and about 14–20 lamellae in fingerlings. These lamellae originate from the midline raphe. By SEM, microvillar sensory and ciliated non-sensory cells were observed in the lamellae. TEM revealed microvillar receptor cell with rough endoplasmic reticulum and Golgi apparatus towards apical end. Basal cells were present at the base of receptor cell, supporting cells were located adjacent to the olfactory receptor neurons, while epithelial cells—in the nonsensory part of olfactory epithelium. Mast, blastema, and macrophage cells were also found at the basement membrane. This work is the first publication on ultrastructural organization of the olfactory system of the Indian major carp, which provides information about morphological and ultrastructural organization of the olfactory system and opens new avenues for further investigation of chemical neuroanatomy, sensory signal processing, and neural regulation of reproduction in the Indian major carp.  相似文献   

17.
The anatomical structure of the olfactory organs, nerve tracts and brain was described in Silurus glanis. The changes connected with aging were considered. The olfactory lamellae are thin and tightly set in a rosette. In the 1 year old individuals there are 48...51 lamellae in a single rosette. This number increases gradually with age and in the 9...10 year old welses reaches 150. The surface area of the lamellae of a single rosette also indicates an increase: in the 1 year old specimen it equals 117 mm2, while in the adult individual (5...6 year old)--1040 mm2. This is due to the increase in both the size of each lamella and the number of the lamellae. The obtained results are discussed with regard to other author's data. It has been found that the dynamics of the increase of the surface area of the olfactory epithelium in fish are closely related to the way of life and not to the systematic affiliation of the species.  相似文献   

18.
Summary A comparison of the necklaces of sensory olfactory, and non-sensory nasal respiratory cilia of four vertebrate species (frog, ox, rat and dog) shows that the olfactory cilia have 7±1 (mean±standard deviation) strands in the three mammalian species and 6±1 strands in the frog; for the respiratory cilia these values are 5±1 and 4±1. This function- and species-dependency of ciliary necklace strand numbers is supported by a review of the literature. Necklaces show no other structural differences. Necklace strand densities range from 25–33 strands/m. In both sensory and non-sensory cilia ciliogenesis is preceded by the formation of necklace strands. Sometimes cilia do not develop properly, as demonstrated by the presence of necklace-like structures in the membranes of olfactory dendritic endings and respiratory axonemal aggregates.  相似文献   

19.
Lamellae in the olfactory organ of the channel catfish, Ictalurus punctatus , Rafinesque, possess delicate cilia on surfaces of sensory and non-sensory epithelia. A technique is presented for examining the olfactory cilia by scanning electron micrography.  相似文献   

20.
A commercially important coral-reef fish, the spangled emperor Lethrinus nebulosus, settles into seagrass beds at the end of its pelagic larval phase, but the mechanism for locating these beds is unknown. To investigate this mechanism we first used a wide-choice, ex situ setup to examine the ability of captivity-reared naïve L. nebulosus settlers to select their first benthic habitat by reference to chemical cues. Second, we examined the morphology and ultrastructure of the nasal olfactory organ in settling L. nebulosus juveniles. We obtained the first evidence of a tropical seagrass-settling coral reef fish that can use chemical environmental cues in selecting its first benthic habitat at ranges up to at least 2 m. The L. nebulosus settlers exhibited a well developed pair of nasal olfactory organs, positioned in nares on the dorsal side of the head. These organs were elliptical radial rosettes, one in each of the olfactory chambers, and each comprised 12 lamellae, six on each side of a midline raphe, which were totally covered with sensory and non-sensory cilia, except for the margins. This type of cilia distribution is thought to indicate an acute sense of smell. The olfactory epithelium contained mature and immature ciliated receptor neurons bearing three to five cilia, and a second type of receptor neuron bearing six to eight microvilli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号