首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of oxygen on ascorbic acid concentration and transport were studied in chick embryo (Gallus gallus domesticus). During normoxic incubations, plasma ascorbic acid concentration peaked on fetal day 12 and then fell, before increasing again on day 20 when pulmonary respiration began. In contrast, cerebral ascorbic acid concentration rose after day 6, was maintained at a relatively high level during days 8–18, and then fell significantly by day 20. Exposure of day 16 embryos for 48 h to 42% ambient O2 concentration decreased ascorbic acid concentration by four-fifths in plasma and by one-half in brain, compared to values in normoxic (21% O2) or hypoxic (15% O2) controls. Hyperoxic preincubation of embryos also inhibited ascorbic acid transport, as evidenced by decreased initial rates of saturable and Na+-dependent [14C]ascorbic acid uptake into isolated brain cells. It may be concluded that changes in ascorbic acid concentration occur in response to oxidative stress, consistent with a role for the vitamin in the detoxification of oxygen radicals in fetal tissues. However, changing O2 levels have less effect on ascorbic acid concentration in brain than in plasma, indicating regulation of the vitamin by brain cells. Furthermore, the effect of hyperoxia on cerebral vitamin C may result, in part, from inhibition of cellular ascorbic acid transport.  相似文献   

2.
3.
4.
5.
The provision of 1,25-dihydroxyvitamin D3 as the only source of dietary vitamin D3 to laying hens failed to support normal embryonic development in their fertile eggs. Significant (P less than .001) improvement in embryonic survival to hatching in these eggs resulted from injections of 1,25-dihydroxyvitamin D3, 24,25-dihydroxyvitamin D3, 25-hydroxyvitamin D3, or 24,24-difluoro-25-hydroxyvitamin D3 prior to incubation. Maximum embryonic survival with lowest embryonic mortality was observed when 0.20 micrograms/egg of 1,25-dihydroxyvitamin D3 or 0.60 micrograms/egg 25-hydroxyvitamin D3 was injected. These results indicate that several forms of vitamin D, two of which cannot be converted to 24,25-dihydroxyvitamin D3, can provide this activity; and of the vitamin D compounds tested, 1,25-dihydroxyvitamin D3 may be the most active in supporting embryonic survival in the chick when delivered directly by injection.  相似文献   

6.
Okadaic acid was found to block membrane fusion of chick embryonic myoblasts in culture. It also induced morphological change of the cells from bipolar to spherical shape. These effects were dose-dependent, and could be reversed upon removal of the drug from the culture medium. It showed, however, no effect on the induction of muscle specific proteins including tropomyosin and creatine kinase. When okadaic acid was treated to the cell lysates, the phosphorylation state of many proteins significantly increased. These results suggest that the inhibition of myoblast fusion by okadaic acid may be mediated by the increase in the phosphorylation of certain, unknown protein(s) that regulate the fusion process.  相似文献   

7.
8.
9.
Summary Ascorbic acid is essential for the formation of bone by osteoblasts, but the mechanism by which osteoblasts transport ascorbate has not been investigated previously. We examined the uptake ofl-[14C]ascorbate by a rat osteoblast-like cell line (ROS 17/2.8) and by primary cultures of rat calvaria cells. In both systems, cells accumulatedl-[14C]ascorbate during incubations of 1–30 min at 37°C. Unlike propionic acid, which diffuses across membranes in protonated form, ascorbic acid did not markedly alter cytosolic pH. Initial ascorbate uptake rate saturated with increasing substrate concentration, reflecting a high-affinity interaction that could be described by Michaelis-Menten kinetics (apparentK m =30±2 m andV max=1460±140 nmol ascorbate/g protein/min in ROS 17/2.8 cells incubated with 138mm extracellular Na+). Consistent with a stereoselective carrier-mediated mechanism, unlabeledl-ascorbate was a more potent inhibitor (IC50=30±5 m) ofl-[14C]ascorbate transport than wasd-isoascorbate (IC50=380±55 m). Uptake was dependent on both temperature and Na+, since it was inhibited by cooling to 4°C and by substitution of K+, Li+ or N-methyl-d-glucamine for extracellular Na+. Decreasing the external Na+ concentration lowered both the affinity of the transporter for ascorbate and the apparent maximum velocity of transport. We conclude that osteoblasts possess a stereoselective, high-affinity, Na+-dependent transport system for ascorbate. This system may play a role in the regulation of bone formation.  相似文献   

10.
The effect of thyroxine on biosynthesis of microvillus membrane glycoproteins has been investigated in organ culture of 18-day-old chick embryonic duodenum. Explants incorporate [3H]leucine and [3H]glucosamine continuously, and overall incorporation is enhanced by 10 nM thyroxine during 48 h of labeling; this increase in radioactivity is associated with vesicles released from the microvilli. Light microscope autoradiography, pulse labeling of brush border fragments, and pulse chase experiments reveal that [3H]glucosamine is incorporated into brush border at an increasing rate during culture, and that newly synthesized glycoproteins are discharged into the medium along with brush border enzymes (alkaline phosphatase and maltase). These results suggest that thyroxine stimulates biosynthesis of microvillus membrane glycoproteins, in addition to stimulating vesiculation of the membrane. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 3H-labeled vesicles and brush border fragments show that [3H]leucine and [3H]glucosamine are incorporated into proteins of high molecular weight. Two protein bands are identified as alkaline phosphatase and maltase. Thyroxine stimulates glycosylation of these enzymes, but does not change protein patterns. Radioactivity assay of alkaline phosphatase- and maltase-active gel slices suggests that thyroxine stimulation of these enzyme activities during culture is not correlated with de novo synthesis of these proteins.  相似文献   

11.
The influence of the duration of the organ cultivation on the protective potential of mouse fetal liver hemopoietic cells was investigated. The protective potential was evaluated according to a 3-week viability of the lethally irradiated (mean LD88/21) mice following syngeneic transplantation. During 20 days of cultivation the protective potential (calculated per number of injected cells) remained at the initial level. With more prolonged cultivation (24-62 days) the protective potential was retained only in part of cultures and the mean effect was reduced. No parallelism has been revealed between the totipotent hemopoietic precursors capable of replacing the hemopoietic cells of an irradiated recipient and the CFUs in long-cultivated fetal liver cultures.  相似文献   

12.
Young (3 days-old) embryonic chick hearts (i.e., prior to innervation) show little electrophysiological response to adenosine. However, during embryonic development the sensitivity to adenosine greatly increases. In the present experiments, in which the chick hearts were placed into organ culture, the sensitivity to adenosine was found to increase with time in culture. Thus, the ability of adenosine to slow the spontaneous heart rate became greater during the course of organ culture. These results suggest that physiological responses to adenosine continue to develop in organ culture, and that the increased sensitivity to adenosine seen in ovo may be independent from the development of sympathetic or parasympathetic innervation.  相似文献   

13.
N E Zorn  J T Smith 《Life sciences》1990,47(2):167-173
Ingestion of megadoses of certain vitamins appears to influence the in vivo methylation of mercuric chloride in guinea pigs. The addition of megadoses of vitamin B12 fed either singularly or in combination with folic acid resulted in increased methylmercury concentrations in the liver. Moreover, percent methylmercury levels were significantly increased with B12 treatment in the liver (B12 only and B12/folic acid) and brain (B12/vitamin C). Incorporation of high levels of folic acid into the dietary regime also increased the methylmercury concentration particularly in the liver and hair tissues. The addition of vitamin C in the diet, particularly in combination with B12 (brain) or folic acid (muscle) resulted in increased methylmercury levels in these tissues and percent methylmercury values with B12 in the muscle and brain tissue.  相似文献   

14.
Fatty acid synthesis by subcellular fractions of heart and liver of chick embryos at varying stages of development has been studied. Fatty acid synthetase activity is associated with the embryonic heart at early stages of development, as suggested by substrate requirement, Schmidt decarboxylation of synthesized fatty acids and gas liquid chromatographic identification of the products as palmitic and stearic acids. The fatty acid synthetase activity decreases in heart cytosol with age of the embryo and is absent in the newly hatched chick and in older chicken. The acetyl CoA carboxylase activity is negligible in embryonic and adult chicken heart. The fatty acid synthetase activity in liver is low, but measurable during the entire embryonic development. The activity increases by about three-fold on hatching and thereafter in fed, newly hatched chicks by about 35-fold, over the basal embryonic activity. The acetyl and malonyl transacylase activities in the heart and liver cytosols during development followed closely the fatty acid synthetase activities in heart and liver, respectively. A non-coordinate induction of fatty acid synthetase and acetyl CoA carboxylase activities in liver was observed during development. The microsomal chain elongation in liver and heart followed the pattern of fatty acid synthetase activity in liver and heart, respectively. The mitochondrial chain elongation in embryonic heart is initially low and increases with age; while this activity in liver is higher in early stages of embryonic development than in the older embryos and the chicks. Measurement of lipogenesis from acetate-1-14C by liver and heart slices from chick embryos and newly hatched chicks support the conclusions reached in the studies with the subcellular fractions. The results obtained indicate that the major system of fatty acid synthesis in embryonic and adult heart is the mitochondrial chain elongation. In embryonic liver, fatty acid synthesis proceeds by chain elongation, while the de novo system is the major contributor to the lipogenic capacity of the liver after hatching.  相似文献   

15.
The uptake of glucose by the glucose phosphotransferase system in Escherichia coli was inhibited greater than 90% by ascorbate. The uptake of the nonmetabolizable analog of glucose, methyl-alpha-glucoside, was also inhibited to the same extent, confirming that it was the transport process that was sensitive to ascorbate. Similarly, it was the transport function of mannose phosphotransferase for which mannose and nonmetabolizable 2-deoxyglucose were substrates that was partially inhibited by ascorbate. Other phosphotransferase systems, including those for the uptake of sorbitol, fructose and N-acetylglucosamine, but not mannitol, were also inhibited to varying degrees by ascorbate. The inhibitory effect on the phosphotransferase systems was reversible, required the active oxidation of ascorbate, was sensitive to the presence of free-radical scavengers, and was insensitive to uncouplers. Because ascorbate was not taken up by E. coli, it was concluded that the active inhibitory species was the ascorbate free radical and that it was interacting reversibly with a membrane component, possibly the different enzyme IIB components of the phosphotransferase systems. Ascorbate also inhibited other transport systems causing a slight reduction in the passive diffusion of glycerol, a 50% inhibition of the shock-sensitive uptake of maltose, and a complete inhibition of the proton-symport uptake of lactose. Radical scavengers had little or no effect on the inhibition of these systems.  相似文献   

16.
Embryonic chick duodenum maintained in organ culture is a well-suited model for the study of vitamin D effects on inorganic phosphate (Pi) absorption. The system is sensitive to as little as 6.5 nM vitamin D3 (0.1.I.U./ml culture medium). Increased phosphate absorption is observed after 6--12 h of culture. Maximal response (133% of vitamin D-efficient control) is achieved at 24 h. Phosphate uptake by embryonic chick duodenum involves a saturable and a non-saturable component. The former displays characteristics of an active sodium-dependent transport mechanism and is also sensitive to vitamin D3. Presence of the sterol in culture medium raises the maximal velocity from 55 to 75 nmol Pi/min per g tissue. Km remains unchanged (0.5 mM Pi). Duodena cultured in presence of inhibitors of protein synthesis (actinomycin D, alpha-amanitin and cycloheximide) display reduced rates of phosphate absorption. This treatment also prevents vitamin D3 action on phosphate transport. It is concluded that the sterol affects phosphate transport by modulation of synthesis of proteins which are functional in the Pi absorptive process.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号