首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1 Introduction Over the last few years, plants have proved to be areal treasure trove as models for the construction of bio-logically inspired technical structures and materials [1–5].One ongoing project of the Competence Network ‘Plantsas Concept Generators for Biomimetic Materials andTechnologies’deals with the construction of light-weightstructures with variable stiffness and rapid self-repairmechanisms based on plant structures [6, 7] …  相似文献   

2.
Nature is a huge gallery of art involving nearly perfect structures and properties over the millions of years of development. Many plants and animals show water-repellent properties with fine micro-structures, such as lotus leaf, water skipper and wings of butterfly. Inspired by these special surfaces, the artificial superhydrophobic surfaces have attracted wide attention in both basic research and industrial applications. The wetting properties of superhydrophobic surfaces in nature are affected by the chemical compositions and the surface topographies. So it is possible to realize the biomimetic superhydrophobic surfaces by tuning their surface roughness and surface free energy correspondingly. This review briefly introduces the physical-chemical basis of superhydrophobic plant surfaces in nature to explain how the superhydrophobicity of plant surfaces can be applied to different biomimetic functional materials with relevance to technological applications. Then, three classical effects of natural surfaces are classified: lotus effect, salvinia effect, and petal effect, and the promising strategies to fabricate biomimetic su- perhydrophobic materials are highlighted. Finally, the prospects and challenges of this area in the future are proposed.  相似文献   

3.
The significance of inspiration from nature for technical textiles and for fibrous composite materials is demonstrated by examples of already existing technical solutions that either parallel biology or are indeed inspired by biological models. The two different basic types of biomimetic approaches are briefly presented and discussed for the "technical plant stem." The technical plant stem is a biomimetic product inspired by a variety of structural and functional properties found in different plants. The most important botanical templates are the stems of the giant reed (Arundo donax, Poaceae) and of the Dutch rush (Equisetum hyemale, Equisetaceae). After analysis of the structural and mechanical properties of these plants, the physical principles have been deduced and abstracted and finally transferred to technical applications. Modern computer-controlled fabrication methods for producing technical textiles and for structuring the embedding matrix of compound materials render unique possibilities for transferring the complex structures found in plants, which often are optimized on several hierarchical levels, into technical applications. This process is detailed for the technical plant stem, a biomimetic, lightweight, fibrous composite material based on technical textiles with optimized mechanical properties and a gradient structure.  相似文献   

4.
Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in ‘real-world’ environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why.  相似文献   

5.
Silica, the most abundant compound in the earth's crust, is also widespread in biological systems. Silica has many functions, including support and protection in single-celled organisms and in higher plants and animals alike. Despite this widespread occurrence and importance of function, little is known about biosilica and the mechanisms that produce controlled microscopic and macroscopic silica structures with nanoscale precision, exceeding present synthetic technological approaches. Here we highlight recent progress in identifying proteins, genes and the various environmental factors responsible for the controlled synthesis of silica by marine organisms. Examples of biomimetic approaches to biosilica formation using model peptides to control the formation of structures through manipulation of the processing environment are discussed.  相似文献   

6.
How do flies walk on the ceiling? Many functional solutions for adhering, gluing, and interlocking have evolved independently in different lineages of organisms. Since the diversity of such biological structures and their importance for understanding biology of particular organisms is large, there is a strong need for comparative structural and functional studies. This contribution summarises the original and literature data and proposes classification of biological attachment systems according to several principles. We show a biomimetic potential of studies on biological attachment devices for the further use in technological developments.  相似文献   

7.
The geometrical surfaces of soil-burrowing animals were imitated and modeled on a cone component, the measuring tip part of a soil cone penetrometer. These biomimetic surfaces are concave dimples, convex domes and two wavy forms. The conventional cone surface and the biomimetic cone surfaces were analyzed in ANSYS 11.0 program to estimate cone equivalent stress and soil equivalent stress. Results show that biomimetic surfaces with the geometrical structures have lower cone equivalent stresses and soil equivalent stresses than that with conventional (smooth) surface. The least maximum cone equivalent stress and least maximum soil equivalent stress were recorded for biomimetic surfaces with concave dimples and wavy form-2 respectively. The two-body abrasive wear of biomimetic cone surfaces and conventional (smooth) cone surface were run on a rotary disk type of abrasive wear testing machine. The biomimetic cone surfaces were found to have lower abrasive wear than the conventional surface. It was found that and biomimetic cone surface with concave dimples has the lowest abrasive wear among the all tested surfaces.  相似文献   

8.
Sensory systems are attractive evolutionary models to address how organisms adapt to local environments that can cause ecological speciation. However, tests of these evolutionary models have focused on visual, auditory, and olfactory senses. Here, we show local adaptation of bitter taste receptor genes in two neighboring populations of a wild mammal—the blind mole rat Spalax galili—that show ecological speciation in divergent soil environments. We found that basalt-type bitter receptors showed higher response intensity and sensitivity compared with chalk-type ones using both genetic and cell-based functional analyses. Such functional changes could help animals adapted to basalt soil select plants with less bitterness from diverse local foods, whereas a weaker reception to bitter taste may allow consumption of a greater range of plants for animals inhabiting chalk soil with a scarcity of food supply. Our study shows divergent selection on food resources through local adaptation of bitter receptors, and suggests that taste plays an important yet underappreciated role in speciation.  相似文献   

9.
Through recent advances in nanotechnology and molecular engineering, biomimetics - the development of synthetic systems that imitate biological structures and processes - is now emerging at the nanoscale. In this review, we explore biomimetic nanopores and nanochannels. Biological systems are full of nano-scale channels and pores that inspire us to devise artificial pores that demonstrate molecular selectivity or other functional advantages. Moreover, with a biomimetic approach, we can also study biological pores, through bottom-up engineering approaches whereby constituent components can be investigated outside the complex cellular environment.  相似文献   

10.
The literary and the authors' own data on the structural and functional organization of hormonal signaling systems in the lower eukaryotes (yeasts, trypanosomes, ciliates, slide mold Dictyostelium discoideum) have been summarized and analysed. On the basis of a comparative analysis of the primary structures of signal proteins in the lower and higher eukaryotes (G-protein alpha-subunits, enzymes-cyclases-adenylyl and guanylyl cyclases) some possible pathways of the evolution of proteins are suggested. At the level of unicellular organisms, the main blocks of hormone-sensitive signaling systems of the higher eukaryotes were created. Moreover, signaling systems of the lower eukaryotes ar more invariant than these of the higher eukaryotes. It may be associated with the fact that of functional blocks, typical for signaling systems of multicellular animals, fungi and plants, were selected from the numerous variants of signaling system blocks of unicellular organisms.  相似文献   

11.
Nitrogen (N) metabolism is essential for the biosynthesis of vital biomolecules. N status thus exerts profound effects on plant growth and development, and must be closely monitored. In bacteria and fungi, a few sophisticated N sensing systems have been extensively studied. In animals, the ability to receive amino acid signals has evolved to become an integral part of the nervous coordination system. In this review, we will summarize recent developments in the search for putative N sensing systems in higher plants based on homologous systems in bacteria, fungi, and animals. Apparently, although plants have separated and diversified from other organisms during the evolution process, striking similarities can be found in their N sensing systems compared with those of their counterparts; however, our understanding of these systems is still incomplete. Significant modifications of the N sensing systems (including cross-talk with other signal transduction pathways) in higher plants may be a strategy of adaptation to their unique mode of life.  相似文献   

12.
Many structural and functional properties possessed by plants have great potentials to stimulate new concepts and inno-vative ideas in the field of biomimetic engineering. The key inputs from biology can be used for creation of efficient and op-timized structures. The study of the geometry and folding pattern of leaves of Mimosa pudica,referred as Sensitive Plant,reveals some of the peculiar characteristics during folding and unfolding. When the leaf is touched,it quickly folds its leaflets and pinnae and droops downward at the petiole attachment. With the help of experiments on simulation model,the variations in angle of leaflets and degree of compaction after folding are investigated.  相似文献   

13.
How many flowering plants are pollinated by animals?   总被引:3,自引:0,他引:3  
It is clear that the majority of flowering plants are pollinated by insects and other animals, with a minority utilising abiotic pollen vectors, mainly wind. However there is no accurate published calculation of the proportion of the ca 352 000 species of angiosperms that interact with pollinators. Widely cited figures range from 67% to 96% but these have not been based on firm data. We estimated the number and proportion of flowering plants that are pollinated by animals using published and unpublished community‐level surveys of plant pollination systems that recorded whether each species present was pollinated by animals or wind. The proportion of animal‐pollinated species rises from a mean of 78% in temperate‐zone communities to 94% in tropical communities. By correcting for the latitudinal diversity trend in flowering plants, we estimate the global number and proportion of animal pollinated angiosperms as 308 006, which is 87.5% of the estimated species‐level diversity of flowering plants. Given current concerns about the decline in pollinators and the possible resulting impacts on both natural communities and agricultural crops, such estimates are vital to both ecologists and policy makers. Further research is required to assess in detail the absolute dependency of these plants on their pollinators, and how this varies with latitude and community type, but there is no doubt that plant–pollinator interactions play a significant role in maintaining the functional integrity of most terrestrial ecosystems.  相似文献   

14.
Composite S-layer lipid structures   总被引:1,自引:0,他引:1  
Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state of the art survey how S-layer proteins, lipids, and polysaccharides may be used as basic building blocks for the assembly of S-layer supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas for application of composite S-layer membrane systems concern sensor systems involving specific membrane functions.  相似文献   

15.
Numerous citations in the literature indicate that polyamines are intensively studied in plants. Polyamines are implicated in many functions of the plant cell. Excellent recent reviews cover much of this original research. This article is focused primarily on literature that relates research on the role of polyamines in apoptosis and programmed cell death in both plants and animals. Apoptosis and programmed cell death are considerably better studied in animal systems, and this review demonstrates that the role of polyamines in these processes in plant systems are remarkably congruent with what is known in animal systems. In addition, key recent research reports are reviewed that describe the functional analysis of key polyamine biosynthesis genes in plants in relation to responses to environmental stress signals. Molecular analysis is providing strong evidence for the polyamine biosynthetic pathways to play major roles in ameliorating plant responses to abiotic stresses.  相似文献   

16.
Recent findings have highlighted remarkable similarities in the innate pathogen defense systems of plants, animals and insects. Pathogen-associated molecular patterns (PAMP) that are similar to those activating innate immune responses in animals have been shown to mediate the activation of plant defense. Moreover, recognition complexes that are structurally related to animal PAMP receptors are now being discovered in plants, suggesting a common evolutionary origin of pathogen defense systems in higher eukaryotes.  相似文献   

17.
Regulation and function of retinoblastoma-related plant genes   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
Plant genomes encode a variety of protein kinases, and while some are functional homologues of animal and fungal kinases, others have a novel structure. This review focuses on three groups of unusual membrane-associated plant protein kinases: receptor-like protein kinases (RLKs), calcium-dependent protein kinases (CDPKs), and histidine protein kinases. Animal RLKs have a putative extracellular domain, a single transmembrane domain, and a protein kinase domain. In plants, all of the RLKs identified thus far have serine/threonine signature sequences, rather than the tyrosine-specific signature sequences common to animals. Recent genetic experiments reveal that some of these plant kinases function in development and pathogen resistance. The CDPKs of plants and protozoans are composed of a single polypeptide with a protein kinase domain fused to a C-terminal calmodulin-like domain containing four calcium-binding EF hands. No functional plant homologues of protein kinase C or Ca2+/calmodulin-dependent protein kinase have been identified, and no animal or fungal CDPK homologues have been identified. Recently, histidine kinases have been shown to participate in signaling pathways in plants and fungi. ETR1, an Arabidopsis histidine kinase homologue with three transmembrane domains, functions as a receptor for the plant hormone ethylene. G-protein-coupled receptors, which often serve as hormone receptors in animal systems, have not yet been identified in plants. Received: 18 August 1997/Revised: 23 December 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号