首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu X  Wan X  Ma X  Wan J 《Génome》2011,54(1):64-80
Quantitative trait locus (QTL) mapping and stability analysis were carried out for 16 rice (Oryza sativa L.) quality traits across eight environments, by using a set of chromosome segment substitution lines with 'Asominori' as genetic background. The 16 quality traits include percentage of grain with chalkiness (PGWC), area of chalky endosperm (ACE), amylose content (AC), protein content (PC), peak viscosity, hot paste viscosity, cool paste viscosity, breakdown viscosity (BDV), setback viscosity (SBV), consistency viscosity, cooked-rice luster (LT), scent, tenderness (TD), viscosity, elasticity, and the integrated values of organleptic evaluation (IVOE). A total of 132 additive effect QTLs are detected for the 16 quality straits in the eight environments. Among these QTLs, 56 loci were detected repeatedly in at least three environments. Interestingly, several QTL clusters were observed for multiple quality traits. Especially, one QTL cluster near the G1149 marker on chromosome 8 includes nine QTLs: qPGWC-8, qACE-8, qAC-8, qPC-8a, qBDV-8a, qSBV-8b, qLT-8a, qTD-8a, and qIVOE-8a, which control PGWC, ACE, AC, PC, BDV, SBV, LT, TD, and IVOE, respectively. Moreover, this QTL cluster shows high stability and repeatability in all eight environments. In addition, one QTL cluster was located near the C2340 marker on chromosome 1 and another was detected near the XNpb67 marker on chromosome 2; each cluster contained five loci. Near the C563 marker on chromosome 3, one QTL cluster with four loci was found. Also, there were nine QTL clusters that each had two or three loci; however, their repeatability in different environments was relatively lower, and the genetic contribution rate was relatively smaller. Considering the correlations among all of the 16 quality traits with QTL cluster distributions, we can conclude that the stable and major QTL cluster on chromosome 8 is the main genetic basis for the effect of rice chalkiness, AC, PC, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice. Consequently, this QTL cluster is a novel gene resource for controlling rice high-quality traits and should be of great significance for research on formation mechanism and molecule improvement of rice quality.  相似文献   

2.
The cooking and eating quality of rice has attracted more attention recently. In a comprehensive effort to unravel its genetic basis, we conducted a genome-wide analysis of six traits representing the cooking and eating quality of rice grain, namely, amylose content (AC), gel consistency (GC), gelatinization temperature (GT), water absorption (WA), cooked rice elongation (CRE) and volume expansion (VE) using a DH population derived from the anther culture of an F1 hybrid between WYJ 2 (japonica) and Zhenshan 97B (indica). For each trait, one to three quantitative trait loci (QTL) were found, which were located on chromosomes 1, 2, 3, 6, 11. QTL analysis revealed a major QTL specifying GT, located at the interval RM276-RM121, which should be the same locus as the alkali degeneration gene (alk), while for each of the remaining five traits the QTL explaining the largest proportion of variance was located on the short arm of chromosome 6, centered at RM190 (found in the waxy gene). Our results, in combination with previous reports, further confirmed that either the waxy gene itself or a genomic region tightly linked to it plays a major role in determining the cooking and eating quality of rice.  相似文献   

3.
The cooking and eating quality of the rice grain is one of the most serious problems in many rice-producing areas of the world. In this study, we conducted a molecular marker-based genetic analysis of three traits, amylose content (AC), gel consistency (GC) and gelatinization temperature (GT), that are the most important constituents of the cooking and eating quality of rice grains. The materials used in the analysis included F2 seeds, an F2:3 population, and an F9 recombinant inbred-line population from a cross between the parents of ’Shanyou 63’, the most widely grown hybrid in rice production in China. Segregation analyses of these three generations showed that each of the three traits was controlled by a single Mendelian locus. Molecular marker-based QTL (quantitative trait locus) analyses, both by one-way analysis of variance using single marker genotypes and by whole-genome scanning with MAPMAKER/QTL, revealed a single locus that controls the expression of all three traits. This locus coincided with the Wx region on the short arm of chromosome 6, indicating that all three traits were either controlled by the Wx locus or by a genomic region tightly linked to this locus. This finding has provided clues to resolving the molecular bases of GC and GT in future studies. The results also have direct implications for the quality improvement of rice varieties. Received: 5 January 1999 / Accepted 30 January 1999  相似文献   

4.
Amylose content (AC), gel consistency (GC) and gelatinazation temperature (GT) are three important traits that influence the cooking and eating quality of rice. The objective of this study was to characterize the genetic components, including main-effect quantitative trait loci (QTLs), epistatic QTLs and QTL-by-environment interactions (QEs), that are involved in the control of these three traits. A population of doubled haploid (DH) lines derived from a cross between two indica varieties Zhenshan 97 and H94 was used, and data were collected from a field experiment conducted in two different environments. A genetic linkage map consisting of 218 simple sequence repeat (SSR) loci was constructed, and QTL analysis performed using qtlmapper 1.6 resolved the genetic components into main-effect QTLs, epistatic QTLs and QEs. The analysis detected a total of 12 main-effect QTLs for the three traits, with a QTL corresponding to the Wx locus showing a major effect on AC and GC, and a QTL corresponding to the Alk locus having a major effect on GT. Ten digenic interactions involving 19 loci were detected for the three traits, and six main-effect QTLs and two pairs of epistatic QTLs were involved in QEs. While the main-effect QTLs, especially the ones corresponding to known major loci, apparently played predominant roles in the genetic basis of the traits, under certain conditions epistatic effects and QEs also played important roles in controlling the traits. The implications of the findings for rice quality improvement are discussed.  相似文献   

5.
以10个云南粳稻和6个韩国粳稻品种为材料,研究了不同生态条件对云南和韩国粳稻主要品质及RVA谱特性的影响.结果表明: 云南和韩国粳稻各指标的变异系数均以消减值最大.云南粳稻的粒长、垩白率、直链淀粉含量、蛋白质含量、碱消值、最终黏度、消减值和峰值时间的变异系数明显大于韩国粳稻,而其他品质指标则相反.随海拔升高,云南粳稻的粒长、粒宽、长宽比、精白度、直链淀粉含量、碱消值、最终黏度和回复值及韩国粳稻的粒长、粒宽、精白度、蛋白质含量、最高黏度、热浆黏度和崩解值明显降低,而云南粳稻的垩白率、蛋白质含量、热浆黏度和峰值时间及韩国粳稻的长宽比、直链淀粉含量、碱消值、消减值和回复值明显升高,但韩国粳稻的垩白率无明显变化.云南粳稻的最高黏度、崩解值和糊化温度及韩国粳稻的糊化温度随海拔升高呈先降后升趋势,而云南粳稻的消减值及韩国粳稻的最终黏度和峰值时间则表现相反趋势.  相似文献   

6.
Starch paste viscosity plays an important role in estimating the cooking, eating, and processing quality of rice. The inheritance of starch paste viscosity in glutinous rice remains undefined. In the present study, 118 glutinous rice accessions were collected, and the genotypes of 17 starch synthesis-related genes (SSRG) were analyzed by using 43 gene-specific molecular markers. Association analysis indicated that 10 of 17 SSRGs were involved in controlling the rapid visco analyzer (RVA) profile parameters. Among these, the PUL gene was identified to play an important role in control of peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV), breakdown viscosity (BDV), peak time (PeT), and paste temperature (PaT) in glutinous rice. Other SSRGs involved only a few RVA profile parameters. Furthermore, interactions between SSRGs were found being responsible for PeT, PaT, and BDV. Some of the RVA parameters, including PKV, HPV, CPV, CSV, and PaT, were mainly governed by single SSRG, whereas other parameters, such as BDV, SBV, and PeT, were controlled by a few SSRGs, functioning cooperatively. Further, three near-isogenic lines (NIL) of a japonica glutinous cv. Suyunuo as genetic background, with PUL, SSIII-1, and SSIII-2 alleles replaced with those of indica cv. Guichao 2, were employed to verify the genetic effects of the various genes, and the results were consistent with those obtained from the association analysis. These findings indicated that starch paste viscosity in glutinous rice had a complex genetic system, and the PUL gene played an important role in determining the RVA profile parameters in glutinous rice. These results provide important information for potentially improving the quality of glutinous rice.  相似文献   

7.
The eating and cooking qualities of rice are heavily emphasized in breeding programs because they determine market values and they are the appealing attributes sought by consumers. Conventional breeding has developed traditional varieties with improved eating and cooking qualities. Recently, intensive genetic studies have pinpointed the genes that control eating and cooking quality traits. Advances in genetic studies have developed molecular techniques, thereby allowing marker-assisted breeding (MAB) for improved eating and cooking qualities in rice. MAB has gained the attention of rice breeders for the advantages it can offer that conventional breeding cannot. There have been successful cases of using MAB to improve the eating and cooking qualities in rice over the years. Nevertheless, MAB should be applied cautiously given the intensive effort needed for genotyping. Perspectives from conventional breeding to marker-assisted breeding will be discussed in this review for the advancement of the eating and cooking qualities of fragrance, amylose content (AC), gel consistency (GC) and gelatinization temperature (GT) in rice. These four parameters are associated with eating and cooking qualities in rice. The genetic basis of these four parameters is also included in this review. MAB is another approach to rice variety improvement and development in addition to being an alternative to genetic engineering. The MAB approach shortens the varietal development time, and is therefore able to deliver improved rice varieties to farmers within a shorter period of time.  相似文献   

8.
挖掘与稻米蒸煮品质相关的数量性状基因座(quantitative trait locus, QTL),分析候选基因,并通过遗传育种手段改良稻米蒸煮品质相关性状,可有效提升稻米的口感。以籼稻华占(Huazhan, HZ)、粳稻热研2号(Nekken2)及由其构建的120个重组自交系(recombinant inbred lines, RILs)群体为实验材料,测定成熟期稻米的糊化温度(gelatinization temperature, GT)、胶稠度(gel consistency, GC)和直链淀粉含量(amylose content, AC)。结合高密度分子遗传图谱进行QTL定位,共检测到26个与稻米蒸煮品质相关的QTLs (糊化温度相关位点1个、胶稠度相关位点13个、直链淀粉含量相关位点12个),其中最高奇数的可能性(likelihood of odd, LOD)值达30.24。通过实时荧光定量PCR (quantitative real-time polymerase chain reaction, qRT-PCR)分析定位区间内候选基因的表达量,发现6个基因在双亲间的表达量差异显著,推测LOC_Os04g20270LOC_Os11g40100的高表达可能会极大地提高稻米的胶稠度,而LOC_Os01g04920LOC_Os02g17500的高表达以及LOC_Os03g02650LOC_Os05g25840的低表达有助于降低直链淀粉含量。这些结果为培育优质水稻新品种奠定了分子基础,并为揭示稻米蒸煮品质的分子调控机制提供了重要的遗传资源。  相似文献   

9.
Thai jasmine rice, KDML 105, is known as the best quality rice.It is known not only for its aroma but also for its good cookingand eating qualities. Amylose content (AC), gel consistency(GC) and gelatinization temperature (GT) are important traitsdetermining rice quality. A population of recombinant inbredlines (RIL) derived from KDML105 x CT9993 cross was used tostudy the genetic control of AC, GC and GT traits. A total of191 markers were used in the linkage map construction. The 1605.3cM linkage map covering nearly the whole rice genome was usedfor QTL (define QTL) analysis. Four QTLs for AC were detectedon chromosomes 3, 4, 6 and 7. These QTLs accounted for 80% ofphenotypic variation explained (PVE) in AC. The presence ofone major gene as well as several modifiers was responsiblefor the expression of the trait. Two QTLs on chromosome 6 andone on chromosome 7 were detected for GC, which accounts for57% of PVE. A single gene of major effect along with modifiergenes controls GC from this cross. The QTLs in the vicinityof waxy locus were major contributors in the expression of ACand GC. The finding that the position of QTLs for AC and GCwere near each other may reflect tight linkage or pleiotropy.Three QTLs were detected, one on chromosome 2 and two on chromosome6, which accounted for 67% of PVE in GT. Just like AC and GC,one major gene and modifier genes governed the variation inGT resulting from the KDML105 x CT9993 cross. Breeding for cookingand eating qualities will largely rely on the preferences ofthe end users.  相似文献   

10.
In order to understand the genetic basis of the paste viscosity characteristics (RVA profile, which is tested on the Rapid Visco Analyser) of the rice grain, we mapped QTLs for RVA profile parameters using a DH population derived from a cross between an indica variety, Zai-Ye-Qing 8 (ZYQ8), and a japonica variety, Jing-Xi 17 (JX17). Evidence of genotype-by-environment interaction was found by comparing the mapped QTLs between two locations, Hainan (HN) and Hangzhou (HZ). A total of 20 QTLs for six parameters of the RVA profiles were identified at least one location. Only the waxy locus (wx) located on chromosome 6 was detected significantly at both environments for five traits, i.e. hot paste viscosity (HPV), cool paste viscosity (CPV), breakdown viscosity (BDV), consistency viscosity (CSV) and setback viscosity (SBV). This locus explained 19.5%–63.7% of the total variations at both environments, suggesting that the RVA profiles were mainly controlled by the wx gene. HPV, CPV, BDV, CSV and SBV were also controlled by other QTLs whose effects on the respective parameter were detected only in one environment, while for the peak viscosity (PKV), only 2 QTLs, 1 at HN,the other at HZ, were identified. These results indicate that RVA profiles are obviously affected by environment. Received: 18 July 1999 / Accepted: 27 August 1999  相似文献   

11.
"Zhenshan 97" is the female parent of a number of widely used hybrids for rice production in China. However, this line is of poor quality because of a high amylose content (AC), a hard gel consistency (GC) and a low gelatinization temperature (GT), together with a chalky endosperm. It had been determined that the three traits for cooking and eating quality, AC, GC and GT, are controlled by the Waxy locus and/or the tightly linked genomic region. In this study we improved the eating and cooking quality of Zhenshan 97 by introgressing the Waxy gene region from Minghui 63 (wx-MH), a restorer line, that has medium AC, soft GC and high GT. The wx-MH fragment was transferred to Zhenshan 97B by three backcrosses and one selfing, then from Zhenshan 97B to Zhenshan 97A by a cross and a backcross. Molecular marker-assisted selection was applied in the series to select for individuals carrying wx-MH, to identify recombination between the Waxy and flanking markers, and also to recover the genetic background of the recurrent parent. According to the marker genotypes, the improved versions of Zhenshan 97B and Zhenshan 97A, or Zhenshan 97B(wx-MH) and Zhenshan 97A(wx-MH), were the same as the originals except for the Waxy region of less than 6.1 cM in length. The selected lines and their hybrids with Minghui 63, or Shanyou 63(wx-MH), showed a reduced AC and an increased GC and GT, coupled with a reduced grain opacity. Field examinations of agronomic performance revealed that Zhenshan 97B(wx-MH) and Shanyou 63(wx-MH) were essentially the same as the originals except for a significant decrease in grain weight. The simultaneous improvement of AC, GA, GT and opacity, indicated that the Waxy region had major effects on the four quality traits. The improved versions of Zhenshan 97 A and B should be immediately useful in hybrid rice production.  相似文献   

12.
协优57是一个产量高和适应性强的杂交中籼组合,但由于其父母本直链淀粉含量(AC)高,导致杂交稻米的AC较高、蒸煮食味品质较差。先前利用PCR-AccⅠ分子标记辅助选择对协优57的亲本057[恢复系,记作057(GG)]和协青早A[不育系,记作协A(GG)]的W x基因进行改良。利用改良前、后的各亲本分别配组,分析不同组合的AC、食味品质和颗粒性淀粉结合酶(GBSS)活性。结果表明,改良单亲的GT型组合协A(GG)×057(TT)、协A(TT)×057(GG)杂交稻米的AC由原组合协A(GG)×057(GG)的28%分别降到19.9%和19.3%,但均一性较差。改良双亲的TT纯合型组合协A(TT)×057(TT)的杂交稻米,不仅AC降到中等偏低水平(13.1%),而且AC的均一性也有了很大的提高,蒸煮食味品质明显改善。GBSS活性分析表明:三种W x基因型的GBSS活性总体表现为GG〉GT〉TT。  相似文献   

13.
Starch pasting viscosity is an important quality trait in cassava (Manihot esculenta Crantz) cultivars. The aim here was to identify loci and candidate genes associated with the starch pasting viscosity. Quantitative trait loci (QTL) mapping for seven pasting viscosity parameters was carried out using 100 lines of an F1 mapping population from a cross between two cassava cultivars Huay Bong 60 and Hanatee. Starch samples were obtained from roots of cassava grown in 2008 and 2009 at Rayong, and in 2009 at Lop Buri province, Thailand. The traits showed continuous distribution among the F1 progeny with transgressive variation. Fifteen QTL were identified from mean trait data, with Logarithm of Odds (LOD) values from 2.77–13.01 and phenotype variations explained (PVE) from10.0–48.4%. In addition, 48 QTL were identified in separate environments. The LOD values ranged from 2.55–8.68 and explained 6.6–43.7% of phenotype variation. The loci were located on 19 linkage groups. The most important QTL for pasting temperature (PT) (qPT.1LG1) from mean trait values showed largest effect with highest LOD value (13.01) and PVE (48.4%). The QTL co‐localised with PT and pasting time (PTi) loci that were identified in separate environments. Candidate genes were identified within the QTL peak regions. However, the major genes of interest, encoding the family of glycosyl or glucosyl transferases and hydrolases, were located at the periphery of QTL peaks. The loci identified could be effectively applied in breeding programmes to improve cassava starch quality. Alleles of candidate genes should be further studied in order to better understand their effects on starch quality traits.  相似文献   

14.
Genetic effects and genotype×environment (GE) interaction effects on the cooking quality traits of indica rice (Oryza sativa L.) were analyzed based on a genetic model for quantitative traits of triploid endosperm in cereal crops. Nine cytoplasmic male-sterile lines as females and 5 restoring lines as males were used in an incomplete diallel cross over 2 years. The cooking quality traits studied were observed to be mainly controlled by genetic effects, but GE interaction effects, especially for amylose content (AC) and alkali spreading score (ASS), were also indicated. Among the genetic effects, seed direct effects and maternal effects were the main components of AC and ASS, respectively; cytoplasmic effects were the main components of gel consistency (GC). Among the GE interaction effects, AC and ASS were mainly affected by maternal interaction effects and GC by direct interaction effects. Additive effects and/or additive interaction effects were the main factors controlling the performance of rice cooking quality traits except for GC which was affected by dominant interaction effects. For AC and GC, there were seed heterosis and/or maternal heterosis. The predicated genetic effects indicated that four parents were better than the others in improving the rice cooking quality traits of the progenies. It was shown that genetic heterosis and GE interaction heterosis were important, especially for amylose content trait in early season indica rice.  相似文献   

15.
Amylose content (AC), which is regulated by the Waxy (Wx) gene, is a major indicator of eating and cooking quality (ECQ) in rice (Oryza sativa). Thus far, only a limited number of mutations in the N-terminal domain of Wx were found to have a major impact on the AC of rice grains and no mutations with such effects were reported for other regions of the Wx protein. Here, nucleotide substitutions in the middle region of Wx were generated by adenine and cytosine base editors. The nucleotide substitutions led to changes in 15 amino acid residues of Wx, and a series of novel Wx alleles with ACs of 0.3%–29.43% (wild type with AC of 19.87%) were obtained. Importantly, the waxyabe2 allele showed a “soft rice” AC, improved ECQ, favorable appearance, and no undesirable agronomic traits. The transgenes were removed from the waxyabe2 progeny, generating a promising breeding material for improving rice grain quality.  相似文献   

16.
籼米淀粉粘滞性的基因型与环境互作研究   总被引:3,自引:0,他引:3  
包劲松  沈圣泉  夏英武 《遗传学报》2006,33(11):1007-1013
水稻精米中大约含有90%的淀粉,因此淀粉的特性对水稻的食味品质有很大的影响.淀粉粘滞性是预测稻米食用、蒸煮和加工品质的重要指标.本研究利用4个细胞质雄性不育系和8个恢复系配置的不完全双列杂交组合来分析淀粉粘滞性指标(崩解值、回复值和消减值)的胚乳、细胞质和母体基因效应及环境互作效应.结果表明在崩解值、回复值和消减值的遗传变异中,遗传主效应方差分量占了64%以上,表明它们主要受遗传主效应控制,同时也受到基因型与环境互作效应的影响.崩解值、回复值和消减值的总遗传率分别为67.8%、79.5%、79.5%,而且普通遗传率占了总遗传率的75%以上,表明对这些性状的早世代选择有效,且在不同环境中选择效果相对稳定.  相似文献   

17.
Traditional basmati rice varieties are very low yielding due to their poor harvest index, tendency to lodging and increasing susceptibility to foliar diseases; hence there is a need to develop new varieties combining the grain quality attributes of basmati with high yield potential to fill the demand gap. Genetic control of basmati grain and cooking quality traits is quite complex, but breeding work can be greatly facilitated by use of molecular markers tightly linked to these traits. A set of 209 recombinant inbred lines (RILs) developed from a cross between basmati quality variety Pusa 1121 and a contrasting quality breeding line Pusa 1342, were used to map the quantitative trait loci (QTLs) for seven important quality traits namely grain length (GL), grain breadth (GB), grain length to breadth ratio (LBR), cooked kernel elongation ratio (ELR), amylose content (AC), alkali spreading value (ASV) and aroma. A framework molecular linkage map was constructed using 110 polymorphic simple sequence repeat (SSR) markers distributed over the 12 rice chromosomes. A number of QTLs, including three for GL, two for GB, two for LBR, three for aroma and one each for ELR, AC and ASV were mapped on seven different chromosomes. While location of majority of these QTLs was consistent with the previous reports, one QTL for GL on chromosomes 1, and one QTL each for ELR and aroma on chromosomes 11 and 3, respectively, are being reported here for the first time. Contrary to the earlier reports of monogenic recessive inheritance, the aroma in Pusa 1121 is controlled by at least three genes located on chromosomes 3, 4 and 8, and similar to the reported association of badh2 gene with aroma QTL on chromosome 8, we identified location of badh1 gene in the aroma QTL interval on chromosome 4. A discontinuous 5 + 3 bp deletion in the seventh exon of badh2 gene, though present in all the RILs with high aroma, was not sufficient to impart this trait to the rice grains as many of the RILs possessing this deletion showed only mild or no aroma expression. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Waxy(Wx)基因在调控直链淀粉含量形成过程中起着重要的作用,是稻米蒸煮食味品质的一个关键决定因素。在本项研究中,我们以直链淀粉含量为8.7%和10.2%的优质稻品种‘青香软粳’和‘南粳46’为主要研究对象,初步分析并探讨了这两个优质稻品种稻米低直链淀粉形成的分子调控机理。结果显示,虽然都为Wx-II型粳稻品种,‘南粳46’的Wx基因在启动子1773位置存在AA/CT的变异,‘南粳46’和‘青香软粳’的Wx基因在启动子+693位置具有G/A位点多态性。转录水平分析表明,在‘南粳46’和‘青香软粳’稻米发育过程中,Wx基因的表达模式有较大的差异,可能与其启动子序列的多态性相关,AA/CT变异处于Wx基因的转录调控区。Wx基因启动子后+693位点的多态性与已报道Wxmq多态性位点之一相同,引起Arg158/His158的变异;生物信息学软件分析表明,该位点处于底物进入Wx蛋白催化中心的袋口上,Arg158/His158位点的变异可能影响到底物进入Wx蛋白催化活性中心的速率,从而影响稻米直链淀粉的合成过程和含量。文章丰富了Wx基因多态性的研究,为进一步验证其核苷酸变异与稻米直链淀粉含量的相关性奠定了基础。  相似文献   

19.
Effects of salts on pasting, thermal, and rheological properties of rice starch (RS) in the presence of non-ionic (guar gum; GG) or ionic (xanthan; XT) hydrocolloid were studied. Rapid visco-analysis (RVA) showed that addition of salts significantly increased peak, breakdown, and final viscosities, and pasting temperatures of RS/XT blends, whereas those of RS/GG blends were varied depending on the type of salts added. Differential scanning calorimetry (DSC) demonstrated that salt addition significantly increased gelatinization temperatures of either RS/GG or RS/XT blend, whereas gelatinization enthalpy was less affected. Dynamic viscoelastic tests revealed that addition of salts had a more pronounced effect on enhancing structure formation of RS/XT gels than that of RS/GG gels. The steady shear viscosity was generally in line with the values of final viscosity obtained during pasting. These results would be used as a guideline for developing starch-based food products containing salts.  相似文献   

20.
Apparent amylose content (AAC), gel consistency (GC), and gelatinization temperature (GT) are recognized as the most important determinants of rice eating and cooking qualities. The contributions of major starch-synthesis genes to these three traits have been investigated in the three consecutive experiments. In an initial QTL mapping with 130 doubled haploid (DH) lines, derived from an inter-subspecific cross of ‘Nanjing11’/‘Balilla’, the major QTLs responsible for AAC, GC, and GT coincided with the Wx (granule-bound starch synthase gene), Wx, and Sss IIa (soluble starch synthase gene) loci, respectively. In the second experiment, contributions of the major starch-synthesis genes to AAC, GC, and GT variations were estimated by using a multiple linear regression analysis. As shown, the Wx locus was a principal determinant for both AAC and GC, and could account for 58.5% and 38.9% of the phenotypic variations, respectively; while the Sss IIa locus was associated with GT, and could explain 25.5% of the observed variation. Eventually, a F2 population consisting of 501 individuals, derived from an inter-subspecific cross of the two sticky rice varieties ‘Suyunuo’ and ‘Yangfunuo 4’, was examined with gene-tagged markers. In the absence of the Wx gene, none of the starch-synthesis genes investigated could dominate the GC variation, however, the Sss IIa locus could also explain 25.1% of the GT variation. In summary, the Wx locus dominates the AAC variation, and meanwhile plays a major role in the GC variation. The Sss IIa locus is a major factor in explaining the GT variation. Apart from the major genes, other genetic factors may also contribute to the GC/GT variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号