首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X‐ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well‐suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR‐derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state‐of‐the‐art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution.  相似文献   

2.
3.
Diacylglycerol kinase (DAGK) is a 13-kDa integral membrane protein that spans the lipid bilayer three times and which is active in some micellar systems. In this work DAGK was purified using metal ion chelate chromatography, and its structural properties in micelles and organic solvent mixtures studies were examined, primarily to address the question of whether the structure of DAGK can be determined using solution NMR methods. Cross-linking studies established that DAGK is homotrimeric in decyl maltoside (DM) micelles and mixed micelles. The aggregate detergent-protein molecular mass of DAGK in both octyl glucoside and DM micelles was determined to be in the range of 100-110 kDa-much larger than the sum of the molecular weights of the DAGK trimers and the protein-free micelles. In acidic organic solvent mixtures, DAGK-DM complexes were highly soluble and yielded relatively well-resolved NMR spectra. NMR and circular dichroism studies indicated that in these mixtures the enzyme adopts a kinetically trapped monomeric structure in which it irreversibly binds several detergent molecules and is primarily alpha-helical, but in which its tertiary structure is largely disordered. Although these results provide new information regarding the native oligomeric state of DAGK and the structural properties of complex membrane proteins in micelles and organic solvent mixtures, the results discourage the notion that the structure of DAGK can be readily determined at high resolution with solution NMR methods.  相似文献   

4.
Nuclear magnetic resonance (NMR) chemical shifts are experimental observables that are available during the first stage of the protein structure determination process. Recently, some methodologies for building structural models of proteins using only these experimental data have been implemented. To assess the potential of these methods for modeling metalloproteins (generally considered a challenging benchmark), we determined the structures of the yeast copper chaperone Atx1 and the CuA domain of Thermus thermophilus cytochrome c oxidase starting from the available chemical shift data. The metal centers were modeled using molecular dynamics simulations with molecular mechanics potentials. The results obtained are evaluated and discussed.  相似文献   

5.
Biochemical studies by Castro et al. have recently revealed a crucial role for a general acid in the catalysis of nucleic acid transfer in distinct classes of polymerases. For HIV-RT LYS220 was identified as proton donor. This was unanticipated from a structural point of view, since in all ternary crystal structures of HIV-RT LYS220 are too distant from the active site to fulfill this role. In this work molecular dynamics simulations were used to reveal the dynamics of HIV-RT and to provide structural evidence for the role of LYS220. During a 1μs molecular dynamics simulation LYS220 migrates toward the active site and occupies several positions enabling direct and water mediated proton transfer towards pyrophosphate. A combination of quantum mechanical and molecular mechanics methods was used to validate the different modes of interaction.  相似文献   

6.
Metallothioneins (MTs) are essential mammalian metal chaperones. MT isoform 1 (MT1) is expressed in the kidneys and isoform 3 (MT3) is expressed in nervous tissue. For MTs, the solution-based NMR structure was determined for metal-bound MT1 and MT2, and only one X-ray diffraction structure on a crystallized mixed metal-bound MT2 has been reported. The structure of solution-based metalated MT3 is partially known using NMR methods; however, little is known about the fluxional de novo apo-MT3 because the structure cannot be determined by traditional methods. Here, we used cysteine modification coupled with electrospray ionization mass spectrometry, denaturing reactions with guanidinium chloride, stopped-flow methods measuring cysteine modification and metalation, and ion mobility mass spectrometry to reveal that apo-MT3 adopts a compact structure under physiological conditions and an extended structure under denaturing conditions, with no intermediates. Compared with apo-MT1, we found that this compact apo-MT3 binds to a cysteine modifier more cooperatively at equilibrium and 0.5 times the rate, providing quantitative evidence that many of the 20 cysteines of apo-MT3 are less accessible than those of apo-MT1. In addition, this compact apo-MT3 can be identified as a distinct population using ion mobility mass spectrometry. Furthermore, proposed structural models can be calculated using molecular dynamics methods. Collectively, these findings provide support for MT3 acting as a noninducible regulator of the nervous system compared with MT1 as an inducible scavenger of trace metals and toxic metals in the kidneys.  相似文献   

7.
Here we provide insights into the molecular structure of the two-iron 19-kDa rubredoxin (AlkG) of Pseudomonas oleovorans using solution-state nuclear magnetic resonance (NMR) and small-angle X-ray scattering studies. Sequence alignment and biochemical studies have suggested that AlkG comprises two rubredoxin folds connected by a linker region of approximately 70 amino acid residues. The C-terminal domain (C-Rb) of this unusual rubredoxin, together with approximately 35 amino acid residues of the predicted linker region, was expressed in Escherichia coli, purified in the one-iron form and the structure of the cadmium-substituted form determined at high-resolution by NMR spectroscopy. The structure shows that the C-Rb domain is similar in fold to the conventional one-iron rubredoxins from other organisms, whereas the linker region does not have any discernible structure. This tandem "flexible-folded" structure of the polypeptide chain derived for the C-Rb protein was confirmed using solution X-ray scattering methods. X-ray scattering studies of AlkG indicated that the 70-amino acid residue linker forms a structured, yet mobile, polypeptide segment connecting the globular N- and C-terminal domains. The X-ray scattering studies also showed that the N-terminal domain (N-Rb) has a molecular conformation similar to that of C-Rb. The restored molecular shape indicates that the folded N-Rb and C-Rb domains of AlkG are noticeably separated, suggesting some domain movement on complex formation with rubredoxin reductase to allow interdomain electron transfer between the metal centers in AlkG. This study demonstrates the advantage of combining X-ray scattering and NMR methods in structural studies of dynamic, multidomain proteins that are not suited to crystallographic analysis. The study forms a structural foundation for functional studies of the interaction and electron-transfer reactions of AlkG with rubredoxin reductase, also reported herein.  相似文献   

8.
Maderia M  Horton TE  DeRose VJ 《Biochemistry》2000,39(28):8193-8200
A metal site in a 5'-GAAA-3' tetraloop, a stabilizing and phylogenetically conserved RNA motif, is explored using (31)P NMR spectroscopy and phosphorothioate modifications. Similar to previous reports [Legault, P., and Pardi, A. (1994) J. Magn. Reson., Ser. B 103, 82-86], the (31)P NMR spectrum of a 12-nucleotide stem-loop sequence 5'-GGCCGAAAGGCC-3' exhibits resolved features from each of the phosphodiester linkages. Titration with Mg(2+) results in distinct shifts of a subset of these (31)P features, which are assigned to phosphodiesters 5' to A6, A7, and G5. Titration with Co(NH(3))(6)(3+) causes only a slight upfield shift in the A6 feature, suggesting that changes caused by Mg(2+) are due to inner-sphere metal-phosphate coordination. R(p)-Phosphorothioate substitutions introduced enzymatically 5' to each of the three A residues of the tetraloop provide well-resolved (31)P NMR features that are observed to shift in the presence of Cd(2+) but not Mg(2+), again consistent with a metal-phosphate site. Analysis of (31)P NMR spectra using the sequence 5'-GGGCGAAAGUCC-3' with single phosphorothioate substitutions in the loop region, separated into R(p) and S(p) diastereomers, provides evidence for an inner-sphere interaction with the phosphate 5' to A7 but outer-sphere or structural effects that cause perturbations 5' to A6. Introduction of an R(p)-phosphorothioate 5' to A7 results in a distinct (31)P NMR spectrum, consistent with thermodynamic studies reported in the accompanying paper that indicate a unique structure caused by this substitution. On the basis of these results and existing structural information, a metal site in the 5'-GAAA-3' tetraloop is modeled using restrained molecular dynamics simulations.  相似文献   

9.
10.
Translesional DNA synthesis past abasic sites proceeds with the preferential incorporation of dAMP opposite the lesion and, depending on the sequence context, one or two base deletions. High-resolution NMR spectroscopy and molecular dynamics simulations were used to determine the three-dimensional structure of a DNA heteroduplex containing a synthetic abasic site (tetrahydrofuran) residue positioned in a sequence that promotes one base deletions. Analysis of NMR spectra indicates that the stem region of the duplex adopts a right-handed helical structure and the glycosidic torsion angle is in anti orientation for all residues. NOE interactions establish Watson-Crick alignments for all canonical base pairs of the duplex. Measurement of distance interactions at the lesion site shows the abasic residue excluded from the helix. Restrained molecular dynamics simulations generated three-dimensional models in excellent agreement with the spectroscopic data. These structures show a regular duplex region and a slight bend at the lesion site. The tetrahydrofuran residue extrudes from the helix and is highly flexible. The model reported here, in conjunction with a previous study performed on abasic sites, explains the structural bias of one-base deletion mutations.  相似文献   

11.
Mucin 1 is a well-established target for the early diagnosis of epithelial cancers. The nucleotides of the S1.3/S2.2 DNA aptamer involved in binding to variable number tandem repeat mucin 1 peptides have been identified using footprinting experiments. The majority of these binding nucleotides are located in the 25-nucleotide variable region of the total aptamer. Imino proton and 2D NMR spectra of truncated and total aptamers in supercooled water reveal common hydrogen-bonding networks and point to a similar secondary structure for this 25-mer sequence alone or embedded within the total aptamer. NMR titration experiments confirm that the TTT triloop structure is the primary binding site and show that the initial structure of the truncated aptamers is conserved upon interaction with variable number tandem repeat peptides. The thermal dependence of the NMR chemical shift data shows that the base-paired nucleotides melt cooperatively at 47 ±?4°C. The structure of the 25-mer oligonucleotide was determined using a new combined mesoscale molecular modeling, molecular dynamics and NMR spectroscopy investigation. It contains three Watson-Crick pairs, three consecutive mispairs and four Watson-Crick pairs capped by a TTT triloop motif. The 3D model structures (PDB 2L5K) and biopolymer chain elasticity molecular models are consistent with both NMR and long unconstrained molecular dynamics (10 ns) in explicit water, respectively. Database Structural data are available in the Protein Data Bank and BioMagResBank databases under the accession numbers 2L5K and 17129, respectively.  相似文献   

12.
Mo H  Pochapsky SS  Pochapsky TC 《Biochemistry》1999,38(17):5666-5675
Terpredoxin (Tdx) is a 105-residue bacterial ferredoxin consisting of a single polypeptide chain and a single Fe2S2 prosthetic group. Tdx was first identified in a strain of Pseudomonas sp. capable of using alpha-terpineol as sole carbon source. The Tdx gene, previously cloned from the plasmid-encoded terp operon, that carries genes encoding for proteins involved in terpineol catabolism, has been subcloned and expressed as the holoprotein in E. coli. Physical characterization of the expressed Tdx has been performed, and a model for the solution structure of oxidized Tdx (Tdxo) has been determined. High-resolution homo- and heteronuclear NMR data have been used for structure determination in diamagnetic regions of the protein. The structure of the metal binding site (which cannot be determined directly by NMR methods due to paramagnetic broadening of resonances) was modeled using restraints obtained from a crystal structure of the homologous ferredoxin adrenodoxin (Adx) and loose restraints determined from paramagnetic broadening patterns in NMR spectra. Essentially complete 1H and 15N NMR resonance assignments have been made for the diamagnetic region of Tdxo (ca. 80% of the protein). A large five-stranded beta-sheet and a smaller two-stranded beta-sheet were identified, along with three alpha-helices. A high degree of structural homology was observed between Tdx and two other ferredoxins with sequence and functional homology to Tdx for which structures have been determined, Adx and putidaredoxin (Pdx), a homologous Pseudomonas protein. 1H/2H exchange rates for Tdx backbone NH groups were measured for both oxidation states and are rationalized in the context of the Tdx structure. In particular, an argument is made for the importance of the residue following the third ligand of the metal cluster (Arg49 in Tdx, His49 in Pdx, His56 in Adx) in modulating protein dynamics as a function of oxidation state. Some differences between Tdx and Pdx are detected by UV-visible spectroscopy, and structural differences at the C-terminal region were also observed. Tdx exhibits only 2% of the activity of Pdx in turnover assays performed using the reconstituted camphor hydroxylase system of which Pdx is the natural component.  相似文献   

13.
Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two in the Y16S mutant and one in the Y16F and FFF mutants, with intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of (1)H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less probable in WT KSI.  相似文献   

14.
The solution conformation of [D -Pen2,D -Pen5] enkephalin (DPDPE), a highly potent δ-selective opioid agonist, was examined by means of NMR, molecular mechanics and molecular dynamics methods. The structural information in the solvent water was obtained employing one- and two-dimensional methods of 1H and 13C-NMR spectroscopy. Based on the distance geometry technique using the ROE data as input, 400 conformers were obtained and considered in the structure analysis. Alternatively, about 2000 conformers were stochastically generated and related to the NMR data after energy minimization. The structure analysis provides one conformer in agreement with all NMR data, which belongs to the lowest energy conformation group. This structure may serve as a reference conformer for DPDPE analogues synthesized with the aim of activity increase.  相似文献   

15.
Lipid peroxidation products, as well as the metabolic products of vinyl chloride, react with cellular DNA producing the mutagenic adduct 3,N(4)-etheno-2'-deoxycytidine (epsilondC), along with several other exocyclic derivatives. High-resolution NMR spectroscopy and restrained molecular dynamics simulations were used to establish the solution structure of an 11-mer duplex containing an epsilondC.dC base-pair at its center. The NMR data suggested a regular right-handed helical structure having all residues in the anti orientation around the glycosydic torsion angle and Watson-Crick alignments for all canonical base-pairs of the duplex. Restrained molecular dynamics generated a three-dimensional model in excellent agreement with the spectroscopic data. The (epsilondC. dC)-duplex structure is a regular right-handed helix with a slight bend at the lesion site and no severe distortions of the sugar-phosphate backbone. The epsilondC adduct and its partner dC were displaced towards opposite grooves of the helix, resulting in a lesion-containing base-pair that was highly sheared but stabilized to some degree by the formation of a single hydrogen bond. Such a sheared base-pair alignment at the lesion site was previously observed for epsilondC.dG and epsilondC.T duplexes, and was also present in the crystal structures of duplexes containing dG.T and dG. U mismatches. These observations suggest the existence of a substrate structural motif that may be recognized by specific DNA glycosylases during the process of base excision repair.  相似文献   

16.
《Molecular membrane biology》2013,30(5-8):156-178
Abstract

Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.  相似文献   

17.
The three-dimensional structure of the natural undecamer duplex d(CGCACACACGC). d(GCGTGTGTGCG) has been determined by the combined use of NMR spectroscopy and restrained molecular dynamics (rMD) and also by molecular mechanics calculations using the JUMNA program without experimental distance constraints. Both procedures have also been used to model the abasic structure d(CGCACOCACGC).d(GCGTGTGTGCG), where 'O' indicates a modified abasic site: 3-hydroxy-2-(hydroxymethyl) tetrahydrofuran. For the natural duplex, 134 interproton distances have been obtained by complete relaxation matrix analysis of the NOESY cross-peaks intensities, using MARDIGRAS software. These distances along with 100 torsion angles for sugar ring and additional data derived from canonical A and B-DNA, have been used for structures refinement by restrained molecular dynamics. Comparison of the natural oligomer with the abasic structure obtained earlier by NMR/rMD (Y. Coppel, N. Berthet, C. Coulombeau, Ce. Coulombeau, J. Garcia and J. Lhomme, Biochemistry 36, 4817-4830, 1997) confirms that the creation of an abasic site, in this sequence context, leads to marked helix kinking. It is also shown that the JUMNA procedure is capable of reproducing the overall structural features of the natural and damaged DNA conformations without the use of experimental constraints.  相似文献   

18.
Acireductone dioxygenase (ARD) catalyzes different reactions between O2 and 1,2-dihydroxy-3-oxo-5-(methylthio)pent-1-ene (acireductone) depending upon the metal bound in the active site. Ni2+ -ARD cleaves acireductone to formate, CO and methylthiopropionate. If Fe2+ is bound (ARD'), the same substrates yield methylthioketobutyrate and formate. The two forms differ in structure, and are chromatographically separable. Paramagnetism of Fe2+ renders the active site of ARD' inaccessible to standard NMR methods. The structure of ARD' has been determined using Fe2+ binding parameters determined by X-ray absorption spectroscopy and NMR restraints from H98S ARD, a metal-free diamagnetic protein that is isostructural with ARD'. ARD' retains the beta-sandwich fold of ARD, but a structural entropy switch increases order at one end of a two-helix system that bisects the beta-sandwich and decreases order at the other upon interconversion of ARD and ARD', causing loss of the C-terminal helix in ARD' and rearrangements of residues involved in substrate orientation in the active site.  相似文献   

19.
An overview of the present state of research in the field of hyaluronan chain conformational aspects is presented. The relationship between structure and dynamics are illustrated for a series of hyaluronan oligomers. Conformational characteristics of hyaluronan chains are discussed, together with the dynamic chain patterns, evaluated by using a theoretical approach to diffusive polymer dynamics. The dependence of correlation times and NMR relaxation parameters from the chain dimension are investigated. Topological features and dimensional properties are related to the structural determinants by using classical computational methods of molecular mechanics and Monte Carlo simulation.  相似文献   

20.
There are many kinds of silks spun by silkworms and spiders, which are suitable to study the structure-property relationship for molecular design of fibers with high strength and high elasticity. In this review, we mainly focus on the structural determination of two well-known silk fibroin proteins that are from the domesticated silkworm, Bombyx mori, and the wild silkworm, Samia cynthia ricini, respectively. The structures of B. mori silk fibroin before and after spinning were determined by using an appropriate model peptide, (AG)(15), with several solid-state NMR methods; (13)C two-dimensional spin-diffusion solid-state NMR and rotational echo double resonance (REDOR) NMR techniques along with the quantitative use of the conformation-dependent (13)C CP/MAS chemical shifts. The structure of S. c. ricini silk fibroin before spinning was also determined by using a model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, with the solid-state NMR methods. The transition from the structure of B. mori silk fibroin before spinning to the structure after spinning was studied with molecular dynamics calculation by taking into account several external forces applied to the silk fibroin in the silkworm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号