首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Cold comfort farm: the acclimation of plants to freezing temperatures   总被引:24,自引:1,他引:23  
  相似文献   

4.
M Ishitani  L Xiong  H Lee  B Stevenson    J K Zhu 《The Plant cell》1998,10(7):1151-1161
Low-temperature stress induces the expression of a variety of genes in plants. However, the signal transduction pathway(s) that activates gene expression under cold stress is poorly understood. Mutants defective in cold signaling should facilitate molecular analysis of plant responses to low temperature and eventually lead to the identification and cloning of a cold stress receptor(s) and intracellular signaling components. In this study, we characterize a plant mutant affected in its response to low temperatures. The Arabidopsis hos1-1 mutation identified by luciferase imaging causes superinduction of cold-responsive genes, such as RD29A, COR47, COR15A, KIN1, and ADH. Although these genes are also induced by abscisic acid, high salt, or polyethylene glycol in addition to cold, the hos1-1 mutation only enhances their expression under cold stress. Genetic analysis revealed that hos1-1 is a single recessive mutation in a nuclear gene. Our studies using the firefly luciferase reporter gene under the control of the cold-responsive RD29A promoter have indicated that cold-responsive genes can be induced by temperatures as high as 19 degrees C in hos1-1 plants. In contrast, wild-type plants do not express the luciferase reporter at 10 degrees C or higher. Compared with the wild type, hos1-1 plants are l ess cold hardy. Nonetheless, after 2 days of cold acclimation, hos1-1 plants acquired the same degree of freezing tolerance as did the wild type. The hos1-1 plants flowered earlier than did the wild-type plants and appeared constitutively vernalized. Taken together, our findings show that the HOS1 locus is an important negative regulator of cold signal transduction in plant cells and that it plays critical roles in controlling gene expression under cold stress, freezing tolerance, and flowering time.  相似文献   

5.
Chang Y  Reed BM 《Cryobiology》2000,40(4):311-322
Meristems of many pear genotypes can be successfully cryopreserved following 1 week of cold acclimation, but an equal number do not survive the process or have very little regrowth. This study compared commonly used cold acclimation protocols to determine whether the cold acclimation technique used affected the cold hardiness of shoots or the regrowth of cryopreserved meristems. In vitro-grown pear (Pyrus L.) shoots were cold acclimated for up to 16 weeks, then either the shoot tips were tested for cold hardiness or the meristems were cryopreserved by controlled freezing. Cold acclimation consisted of alternating temperatures (22 degrees C with light/-1 degrees C darkness with various photo- and thermoperiods) or a constant temperature (4 degrees C with an 8-h photoperiod or darkness). Compared with nonacclimated controls, both alternating- and constant-temperature acclimation significantly improved postcryopreservation regrowth of P. cordata Desv. and P. pashia Buch. -Ham. ex D. Don meristems. Alternating-temperature acclimation combined with either an 8-h photoperiod or darkness was significantly better than constant-temperature acclimation. Alternating-temperature shoot acclimation for 2 to 5 weeks significantly increased postcryopreservation meristem regrowth, and recovery remained high for up to 15 weeks acclimation. Postcryopreservation meristem regrowth increased with 1 to 5 weeks of constant-temperature acclimation and then declined with longer acclimation. Shoot cold hardiness varied with the acclimation procedure. The LT(50) of shoots acclimated for 10 weeks with alternating temperatures was -25 degrees C; that with constant temperature was -14.7 degrees C; and that of the nonacclimated control was -10 degrees C. Less frequent transfer of cultures also improved acclimation of shoots. Shoots grown without transfer to fresh medium for 6-12 weeks had higher postcryopreservation recovery with shorter periods of acclimation than shoots with a 3-week transfer cycle.  相似文献   

6.
7.
Signal transduction during cold, salt, and drought stresses in plants   总被引:14,自引:0,他引:14  
Abiotic stresses, especially cold, salinity and drought, are the primary causes of crop loss worldwide. Plant adaptation to environmental stresses is dependent upon the activation of cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Plants have stress-specific adaptive responses as well as responses which protect the plants from more than one environmental stress. There are multiple stress perception and signaling pathways, some of which are specific, but others may cross-talk at various steps. In this review article, we first expound the general stress signal transduction pathways, and then highlight various aspects of biotic stresses signal transduction networks. On the genetic analysis, many cold induced pathways are activated to protect plants from deleterious effects of cold stress, but till date, most studied pathway is ICE-CBF-COR signaling pathway. The Salt-Overly-Sensitive (SOS) pathway, identified through isolation and study of the sos1, sos2, and sos3 mutants, is essential for maintaining favorable ion ratios in the cytoplasm and for tolerance of salt stress. Both ABA-dependent and -independent signaling pathways appear to be involved in osmotic stress tolerance. ROS play a dual role in the response of plants to abiotic stresses functioning as toxic by-products of stress metabolism, as well as important signal transduction molecules and the ROS signaling networks can control growth, development, and stress response. Finally, we talk about the common regulatory system and cross-talk among biotic stresses, with particular emphasis on the MAPK cascades and the cross-talk between ABA signaling and biotic signaling.  相似文献   

8.
9.
& 转录因子CBF在植物抗寒中的重要作用   总被引:8,自引:0,他引:8  
钟克亚  叶妙水  胡新文  郭建春 《遗传》2006,28(2):249-254
低温能够诱导植物许多基因的表达,从而使植物具有抗寒性,这种现象称为冷驯化。对于植物冷驯化的分子机理,目前研究的最多的是CBF转录因子调控的信号转导途径,其作用途径可归纳为:CBF(C-repeat Binding Factor)转录因子→CRT/DRE(C-repeat /Dehydration Responsive Element)基序→COR基因表达→植物抗寒性增加。研究CBF转录因子在抗寒中的作用机制,能为提高植物的抗寒性,培育抗寒作物品种提供新方向。   相似文献   

10.
李慧  强胜 《植物学报》2007,24(2):208-217
摘要 冷驯化是与提高植物抗冷性有关的生物化学及生理学过程, 主要包括寒驯化(cool acclimation)和冻驯化(freezing acdimation)。在冷驯化过程中, 植物体内许多基因在转录水平上的表达受到影响, 已经克隆了大量的相关基因,它们组成复杂的分子调控网络。目前研究表明不依赖ABA的低温信号转导途径是植物冷驯化机制的重要组成部分, 其中CBF/DREB1是该调控过程的关键转录因子, 与植物通过冷驯化而提高冰冻耐受能力密切相关。进一步利用转基因技术, 可有效地改善作物的耐冷性状。  相似文献   

11.
Cold acclimation and over-wintering by herbaceous plants are energetically expensive and are dependent on functional plastid metabolism. To understand how the stroma and the lumen proteomes adapt to low temperatures, we have taken a proteomic approach (difference gel electrophoresis) to identify proteins that changed in abundance in Arabidopsis chloroplasts during cold shock (1 day), and short- (10 days) and long-term (40 days) acclimation to 5 degrees C. We show that cold shock (1 day) results in minimal change in the plastid proteomes, while short-term (10 days) acclimation results in major changes in the stromal but few changes in the lumen proteome. Long-term acclimation (40 days) results in modulation of the proteomes of both compartments, with new proteins appearing in the lumen and further modulations in protein abundance occurring in the stroma. We identify 43 differentially displayed proteins that participate in photosynthesis, other plastid metabolic functions, hormone biosynthesis and stress sensing and signal transduction. These findings not only provide new insights into the cold response and acclimation of Arabidopsis, but also demonstrate the importance of studying changes in protein abundance within the relevant cellular compartment.  相似文献   

12.
Adaptative responses of ectothermic organisms to thermal variation typically involve the reorganization of membrane glycerophospholipids (GPLs) to maintain membrane function. We investigated how acclimation at 15, 20 and 25 degrees C during preimaginal development influences the thermal tolerance and the composition of membrane GPLs in adult Drosophila melanogaster. Long-term cold survival was significantly improved by low acclimation temperature. After 60 h at 0 degrees C, more than 80% of the 15 degrees C-acclimated flies survived while none of the 25 degrees C-acclimated flies survived. Cold shock tolerance (1h at subzero temperatures) was also slightly better in the cold acclimated flies. LT50 shifted down by ca 1.5 degrees C in 15 degrees C-acclimated flies in comparison to those acclimated at 25 degrees C. In contrast, heat tolerance was not influenced by acclimation temperature. Low temperature acclimation was associated with the increase in proportion of ethanolamine (from 52.7% to 58.5% in 25 degrees C-acclimated versus 15 degrees C-acclimated flies, respectively) at the expense of choline in GPLs. Relatively small, but statistically significant changes in lipid molecular composition were observed with decreasing acclimation temperature. In particular, the proportions of glycerophosphoethanolamines with linoleic acid (18:2) at the sn-2 position increased. No overall change in the degree of fatty acid unsaturation was observed. Thus, cold tolerance but not heat tolerance was influenced by preimaginal acclimation temperature and correlated with the changes in GPL composition in membranes of adult D. melanogaster.  相似文献   

13.
BACKGROUND AND AIMS: Exposure to low temperatures (LT) produces innumerable changes in morphological, biochemical and physiological characteristics of plants, with the result that it has been difficult to separate cause and effect adjustments to LT. Phenotypic studies have shown that the LT-induced protective mechanisms in cereals are developmentally regulated and involve an acclimation process that can be stopped, reversed and restarted. The present study was initiated to separate the developmental factors determining duration from those responsible for rate of acclimation, to provide the opportunity for a more in depth analysis of the critical mechanisms that regulate LT tolerance in wheat (Triticum aestivum). METHODS: The non-hardy spring wheat cultivar 'Manitou' and the very cold-hardy winter wheat cultivar 'Norstar' were used to produce reciprocal near-isogenic lines (NILs) in which the vrn-A1 (winter) alleles of 'Norstar' were inserted into the non-hardy 'Manitou' genetic background and the Vrn-A1 (spring) alleles of 'Manitou' were inserted in the hardy 'Norstar' genetic background so that the effects of duration and rate of LT acclimation could be quantified. KEY RESULTS: Comparison of the acclimation curves of the NILs and their parents grown at 2, 6 and 10 degrees C established that the full expression of LT-induced genetic systems was revealed only under genotypically dependent optimum combinations of time and temperature. Both duration and rate of acclimation were found to contribute significantly to the 13.8 degrees C difference in lowest survival temperature between 'Norstar' and 'Manitou'. CONCLUSIONS: Duration of LT acclimation was dependent upon the rate of phenological development, which, in turn, was determined by acclimation temperatures and vernalization requirements. Rate of acclimation was faster for genotypes with the 'Norstar' genetic background but the ability to sustain a high rate of acclimation was dependent upon the length of the vegetative stage. Complex time/temperature relationships and unexplained genetic interactions indicated that detailed functional genomic or phenomic analyses of natural allelic variation will be required to identify the critical genetic components of a highly integrated system, which is regulated by environmentally responsive, complex pathways.  相似文献   

14.
Canadian and French laboratory strains of Sitophilus granarius (L.) and Cryptolestes ferrugineus (Stephens) were cold acclimated by placing adults at 15, 10 and 5 degrees C successively for 2wk at each temperature before deacclimating them for 1wk at 30 degrees C. Unacclimated S. granarius had an LT(50) (lethal time for 50% of the population) of 12days at 0 degrees C compared with 40days after the full cold acclimation. At -10 degrees C, unacclimated C. ferrugineus had an LT(50) of 1.4days compared with 24days after the full acclimation. Cold acclimation was lost within a week after returning insects to 30 degrees C. Trehalose, as well as the amino acids proline, asparagine, glutamic acid and lysine were higher in cold acclimated insects for both species. For S. granarius, glutamine was higher in cold acclimated insects and isoleucine, ethanolamine and phosphoethanolamine, a precursor of phospholipids, were lower in cold acclimated insects. For C. ferrugineus, alanine, aspartic acid, threonine, valine, isoleucine, leucine, phenylalanine and phosphoethanolamine were higher in cold acclimated insects. For both species tyrosine was lower in cold acclimated insects. There were small but significant differences between Canadian and French strains of S. granarius, with the Canadian strain being more cold hardy and having higher levels of trehalose. There were small but significant differences between male and female S. granarius, with males being more cold hardy and having higher levels of proline, asparagine and glutamic acid. In conclusion, high levels of trehalose and proline were correlated with cold tolerance, as seen in several other insects. However, correlation does not prove that these compounds are responsible for cold tolerance, and we outline further tests that could demonstrate a causal relationship between trehalose and proline and cold tolerance.  相似文献   

15.
Low temperature is one of the major factors that adversely affect crop yields by causing restraints on plant growth and productivity. However, most temperate plants have the ability to acclimate to cooler temperatures. Cold acclimation is a process which increases the freezing tolerance of an organism after exposure to low, non-freezing temperatures. The main trigger is a decrease in temperature levels, but light reduction has also been shown to have an important impact on acquired tolerance. Since the lowest temperatures are commonly reached during the night hours in winter time and is an annually recurring event, a favorable trait for plants is the possibility of sensing an imminent cold period. Consequently, extensive crosstalk between light- and temperature signaling pathways has been demonstrated and in this review interesting interaction points that have been previously reported in the literature are highlighted.Key words: cold acclimation, light-reduction, signaling pathways, photoperiodism, circadian clock, light quality  相似文献   

16.
Protoplasts were tested to determine whether the freezing sensitivity of the sfr4 (sensitive to freezing) mutant of Arabidopsis was due to the mutant's deficiency in soluble sugars after cold acclimation. When grown under nonacclimated conditions, sfr4 protoplasts possessed freezing tolerance similar to that of wild type, with the temperature at which 50% of protoplasts are injured (LT(50)) of -4.5 degrees C. In both wild-type and sfr4 protoplasts, expansion-induced lysis was the predominant lesion between -2 degrees C and -4 degrees C, but its incidence was low (approximately 10%); below -5 degrees C, loss of osmotic responsiveness (LOR) was the predominant lesion. After cold acclimation, the LT(50) was decreased to only -5.6 degrees C for sfr4 protoplasts, compared with -9.1 degrees C for wild-type protoplasts. Although expansion-induced lysis was precluded in both types of protoplasts, the sfr4 protoplasts remained susceptible to LOR. After incubation of seedlings in Suc solution in the dark at 2 degrees C, freezing tolerance and the incidence of freeze-induced lesions in sfr4 protoplasts were examined. The freezing tolerance of isolated protoplasts (LT(50) of -9 degrees C) and the incidence of LOR were now similar for wild type and sfr4. These results indicate that the freezing sensitivity of cold-acclimated sfr4 is due to its continued susceptibility to LOR (associated with lyotropic formation of the hexagonal II phase) and associated with the low sugar content of its cells.  相似文献   

17.
植物冷驯化相关基因研究进展   总被引:1,自引:0,他引:1  
李慧  强胜 《植物学通报》2007,24(2):208-217
冷驯化是与提高植物抗冷性有关的生物化学及生理学过程,主要包括寒驯化(cool acclimation)和冻驯化(freezing acdimation)。在冷驯化过程中,植物体内许多基因在转录水平上的表达受到影响,已经克隆了大量的相关基因,它们组成复杂的分子调控网络。目前研究表明不依赖ABA的低温信号转导途径是植物冷驯化机制的重要组成部分,其中CBF/DREB1是该调控过程的关键转录因子,与植物通过冷驯化而提高冰冻耐受能力密切相关。进一步利用转基因技术,可以有效地改善作物的耐冷性状。  相似文献   

18.
植物抗寒及其基因表达研究进展   总被引:6,自引:0,他引:6  
曹琴  孔维府  温鹏飞 《生态学报》2004,24(4):806-811
植物经过逐渐降低的温度从而提高抗寒能力 ,这个过程被人们称为低温驯化。植物低温驯化过程是一个复杂的生理、生化和能量代谢变化过程 ,这些变化主要包括膜系统的稳定性、可溶性蛋白的积累和小分子渗透物质 ,比如脯氨酸、糖等 ,这些变化中的一些是植物抗寒必需的 ,而另外一些变化不是必需的。主要对冷害和低温生理生化变化、低温诱导表达基因的功能和作用、低温驯化的调节机制及其信号转导方面进行了综述。通过差别筛选 c DNA文库的方法已经鉴定了许多低温诱导表达、进而提高植物抗寒能力的基因 ,其中有脱水素、COR基因和 CBF1转录因子等。低温信号的感受、转导和调节表达是低温驯化的关键环节 ,低温信号的转导过程与干旱胁迫之间具有一定的交叉 ,这为利用 ABA等来提高植物抗寒能力成为可能 ,相信不久的将来人们可以通过提高植物抗寒能力从而增加经济产量成为现实。  相似文献   

19.
A comparative analysis of gene expression profiles during cold acclimation and deacclimation is necessary to elucidate the molecular mechanisms of cold stress responses in higher plants. We analyzed gene expression profiles in the process of cold acclimation and deacclimation (recovery from cold stress) using two microarray systems, the 7K RAFL cDNA microarray and the Agilent 22K oligonucleotide array. By both microarray analyses, we identified 292 genes up-regulated and 320 genes down-regulated during deacclimation, and 445 cold up-regulated genes and 341 cold down-regulated genes during cold acclimation. Many genes up-regulated during deacclimation were found to be down-regulated during cold acclimation, and vice versa. The genes up-regulated during deacclimation were classified into (1) regulatory proteins involved in further regulation of signal transduction and gene expression and (2) functional proteins involved in the recovery process from cold-stress-induced damages and plant growth. We also applied expression profiling studies to identify the key genes involved in the biosynthesis of carbohydrates and amino acids that are known to play important roles in cold acclimation. We compared genes that are regulated during deacclimation with those regulated during rehydration after dehydration to discuss the similarity and difference of each recovery process.Electronic Supplementary Material Supplementary materials are available for this article at  相似文献   

20.
Salix paraplesia was used as an experimental model to investigate the effect of short day photoperiod (SD) and low temperature (LT) on development of freezing tolerance and on endogenous abscisic acid (ABA) contents. We characterized differences in SD and LT-induced cold acclimation in three ecotypes from different altitudes. The results demonstrated that cold acclimation could be triggered by exposing the plants to SD or LT alone, and that a combination of the different treatments had an additive effect on freezing tolerance in all ecotypes studied. However, the high altitudinal ecotype was more responsive to SD and LT than the low altitudinal ecotype. Development of freezing tolerance induced by SD and LT was accompanied by changes in ABA contents which were ecotype-dependent. Although the stem had higher initial freezing tolerance, the leaves developed freezing tolerance more quickly than the stem and thus leaves may provide an interesting experimental system for physiological and molecular studies of cold acclimation in woody plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号