首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To better understand the dynamic regulation of microtubule structures in yeast, we studied a conditional-lethal beta-tubulin mutation tub2-150. This mutation is unique among the hundreds of tubulin mutations isolated in Saccharomyces cerevisiae in that it appears to cause an increase in the stability of microtubules. We report here that this allele is a mutation of threonine 238 to alanine, and that tub2-150 prevents the spindle from elongating during anaphase, suggesting a nuclear microtubule defect. To identify regulators of microtubule stability and/or anaphase, yeast genes were selected that, when overexpressed, could suppress the tub2-150 temperature-sensitive phenotype. One of these genes, JSN1, encodes a protein of 125 kDa that has limited similarity to a number of proteins of unknown function. Overexpression of the JSN1 gene in a TUB2 strain causes that strain to become more sensitive to benomyl, a microtubule-destabilizing drug. Of a representative group of microtubule mutants, only one other mutation, tub2-404, could be suppressed by JSN1 overexpression, showing that JSN1 is an allele-specific suppressor. As tub2-404 mutants are also defective for spindle elongation, this provides additional support for a role for JSN1 during anaphase.  相似文献   

2.
We have used in vitro mutagenesis and gene replacement to construct five new cold-sensitive mutations in TUB2, the sole gene encoding beta-tubulin in the yeast Saccharomyces cerevisiae. These and one previously isolated tub2 mutant display diverse phenotypes that have allowed us to define the functions of yeast microtubules in vivo. At the restrictive temperature, all of the tub2 mutations inhibit chromosome segregation and block the mitotic cell cycle. However, different microtubule arrays are present in these arrested cells depending on the tub2 allele. One mutant (tub2-401) contains no detectable microtubules, two (tub2-403 and tub2-405) contain greatly diminished levels of both nuclear and cytoplasmic microtubules, one (tub2-104) contains predominantly nuclear microtubules, one (tub2-402) contains predominantly cytoplasmic microtubules, and one (tub2-404) contains prominent nuclear and cytoplasmic microtubule arrays. Using these mutants we demonstrate here that cytoplasmic microtubules are necessary for nuclear migration during the mitotic cell cycle and for nuclear migration and fusion during conjugation; only those mutants that possess cytoplasmic microtubules are able to perform these functions. We also show that microtubules are not required for secretory vesicle transport in yeast; bud growth and invertase secretion occur in cells which contain no microtubules.  相似文献   

3.
《The Journal of cell biology》1994,127(6):1973-1984
We have isolated a cold-sensitive allele of TUB2, the sole gene encoding beta-tubulin in S. cerevisiae, that confers a specific defect in spindle microtubule function. At 14 degrees C, tub2-406 cells lack a normal bipolar spindle but do assemble functional cytoplasmic microtubules. In an attempt to identify proteins that are important for spindle assembly, we screened for suppressors of the cold-sensitivity of tub2-406 and obtained four alleles of a novel gene, STU1. Genetic interactions between stu1 alleles and alleles of TUB1 and TUB2 suggest that Stu1p specifically interacts with microtubules. STU1 is essential for growth and disruption of STU1 causes defects in spindle assembly that are similar to those produced by the tub2-406 mutation. The nucleotide sequence of the STU1 gene predicts a protein product of 174 kD with no significant similarity to known proteins. An epitope-tagged Stulp colocalizes with microtubules in the mitotic spindle of yeast. These results demonstrate that Stulp is an essential component of the yeast mitotic spindle.  相似文献   

4.
5.
We describe the identification of GIM1/YKE2, GIM2/PAC10, GIM3, GIM4 and GIM5 in a screen for mutants that are synthetically lethal with tub4-1, encoding a mutated yeast gamma-tubulin. The cytoplasmic Gim proteins encoded by these GIM genes are present in common complexes as judged by co-immunoprecipitation and gel filtration experiments. The disruption of any of these genes results in similar phenotypes: the gim null mutants are synthetically lethal with tub4-1 and super-sensitive towards the microtubule-depolymerizing drug benomyl. All except Deltagim4 are cold-sensitive and their microtubules disassemble at 14 degrees C. The Gim proteins have one function related to alpha-tubulin and another to Tub4p, supported by the finding that the benomyl super-sensitivity is caused by a reduced level of alpha-tubulin while the synthetic lethality with tub4-1 is not. In addition, GIM1/YKE2 genetically interacts with two distinct classes of genes, one of which is involved in tubulin folding and the other in microtubule nucleation. We show that the Gim proteins are important for Tub4p function and bind to overproduced Tub4p. The mammalian homologues of GIM1/YKE2 and GIM2/PAC10 rescue the synthetically lethal phenotype with tub4-1 as well as the cold-sensitivity and benomyl super-sensitivity of the yeast deletion mutants. We suggest that the Gim proteins form a protein complex that promotes formation of functional alpha- and gamma-tubulin.  相似文献   

6.
7.
8.
The Saccharomyces cerevisiae kinesin-related motor Kar3p, though known to be required for karyogamy, plays a poorly defined, nonessential role during vegetative growth. We have found evidence suggesting that Kar3p functions to limit the number and length of cytoplasmic microtubules in a cell cycle–specific manner. Deletion of KAR3 leads to a dramatic increase in cytoplasmic microtubules, a phenotype which is most pronounced from START through the onset of anaphase but less so during late anaphase in synchronized cultures. We have immunolocalized HA-tagged Kar3p to the spindle pole body region, and fittingly, Kar3p was not detected by late anaphase. A microtubule depolymerizing activity may be the major vegetative role for Kar3p. Addition of the microtubule polymerization inhibitors nocodazol or benomyl to the medium or deletion of the nonessential α-tubulin TUB3 gene can mostly correct the abnormal microtubule arrays and other growth defects of kar3 mutants, suggesting that these phenotypes result from excessive microtubule polymerization. Microtubule depolymerization may also be the mechanism by which Kar3p acts in opposition to the anaphase B motors Cin8p and Kip1p. A preanaphase spindle collapse phenotype of cin8 kip1 mutants, previously shown to involve Kar3p, is markedly delayed when microtubule depolymerization is inhibited by the tub2-150 mutation. These results suggest that the Kar3p motor may act to regulate the length and number of microtubules in the preanaphase spindle.  相似文献   

9.
10.
11.
12.
13.
Microtubule plus-end-interacting proteins (+TIPs) promote the dynamic interactions between the plus ends (+ends) of astral microtubules and cortical actin that are required for preanaphase spindle positioning. Paradoxically, +TIPs such as the EB1 orthologue Bim1 and Kar9 also associate with spindle pole bodies (SPBs), the centrosome equivalent in budding yeast. Here, we show that deletion of four C-terminal residues of the budding yeast gamma-tubulin Tub4 (tub4-delta dsyl) perturbs Bim1 and Kar9 localization to SPBs and Kar9-dependent spindle positioning. Surprisingly, we find Kar9 localizes to microtubule +ends in tub4-delta dsyl cells, but these microtubules fail to position the spindle when targeted to the bud. Using cofluorescence and coaffinity purification, we show Kar9 complexes in tub4-delta dsyl cells contain reduced levels of Bim1. Astral microtubule dynamics is suppressed in tub4-delta dsyl cells, but it are restored by deletion of Kar9. Moreover, Myo2- and F-actin-dependent dwelling of Kar9 in the bud is observed in tub4-delta dsyl cells, suggesting defective Kar9 complexes tether microtubule +ends to the cortex. Overproduction of Bim1, but not Kar9, restores Kar9-dependent spindle positioning in the tub4-delta dsyl mutant, reduces cortical dwelling, and promotes Bim1-Kar9 interactions. We propose that SPBs, via the tail of Tub4, promote the assembly of functional +TIP complexes before their deployment to microtubule +ends.  相似文献   

14.
gamma-Tubulin is essential for microtubule nucleation in yeast and other organisms; whether this protein is regulated in vivo has not been explored. We show that the budding yeast gamma-tubulin (Tub4p) is phosphorylated in vivo. Hyperphosphorylated Tub4p isoforms are restricted to G1. A conserved tyrosine near the carboxy terminus (Tyr445) is required for phosphorylation in vivo. A point mutation, Tyr445 to Asp, causes cells to arrest prior to anaphase. The frequency of new microtubules appearing in the SPB region and the number of microtubules are increased in tub4-Y445D cells, suggesting this mutation promotes microtubule assembly. These data suggest that modification of gamma-tubulin is important for controlling microtubule number, thereby influencing microtubule organization and function during the yeast cell cycle.  相似文献   

15.
Tub4p is a novel tubulin found in Saccharomyces cerevisiae. It most resembles gamma-tubulin and, like it, is localized to the yeast microtubule organizing centre, the spindle pole body (SPB). In this paper we report the identification of SPC98 as a dosage-dependent suppressor of the conditional lethal tub4-1 allele. SPC98 encodes an SPB component of 98 kDa which is identical to the previously described 90 kDa SPB protein. Strong overexpression of SPC98 is toxic, causing cells to arrest with a large bud, defective microtubule structures, undivided nucleus and replicated DNA. The toxicity of SPC98 overexpression was relieved by co-overexpression of TUB4. Further evidence for an interaction between Tub4p and Spc98p came from the synthetic toxicity of tub4-1 and spc98-1 alleles, the dosage-dependent suppression of spc98-4 by TUB4, the binding of Tub4p to Spc98p in the two-hybrid system and the co-immunoprecipitation of Tub4p and Spc98p. In addition, Spc98-1p is defective in its interaction with Tub4p in the two-hybrid system. We suggest a model in which Tub4p and Spc98p form a complex involved in microtubule organization by the SPB.  相似文献   

16.
By using a multiply marked supernumerary chromosome III as an indicator, we isolated mutants of Saccharomyces cerevisiae that display increased rates of chromosome loss. In addition to mutations in the tubulin-encoding TUB genes, we found mutations in the CIN1, CIN2, and CIN4 genes. These genes have been defined independently by mutations causing benomyl supersensitivity and are distinct from other known yeast genes that affect chromosome segregation. Detailed phenotypic characterization of cin mutants revealed several other phenotypes similar to those of tub mutants. Null alleles of these genes caused cold sensitivity for viability. At 11 degrees C, cin mutants arrest at the mitosis stage of their cell cycle because of loss of most microtubule structure. cin1, cin2, and cin4 mutations also cause defects in two other microtubule-mediated processes, nuclear migration and nuclear fusion (karyogamy). Overproduction of the CIN1 gene product was found to cause the same phenotype as loss of function, supersensitivity to benomyl. Our findings suggest that the CIN1, CIN2, and CIN4 proteins contribute to microtubule stability either by regulating the activity of a yeast microtubule component or as structural components of microtubules.  相似文献   

17.
18.
19.
Chai B  Hsu JM  Du J  Laurent BC 《Genetics》2002,161(2):575-584
RSC is a 15-protein ATP-dependent chromatin-remodeling complex related to Snf-Swi, the prototypical ATP-dependent nucleosome remodeler in budding yeast. Despite insight into the mechanism by which purified RSC remodels nucleosomes, little is known about the chromosomal targets or cellular pathways in which RSC acts. To better understand the cellular function of RSC, a screen was undertaken for gene dosage suppressors of sth1-3ts, a temperature-sensitive mutation in STH1, which encodes the essential ATPase subunit. Slg1p and Mid2p, two type I transmembrane stress sensors of cell wall integrity that function upstream of protein kinase C (Pkc1p), were identified as multicopy suppressors of sth1-3ts cells. Although the sth1-3ts mutant exhibits defects characteristic of PKC1 pathway mutants (caffeine and staurosporine sensitivities and an osmoremedial phenotype), only upstream components and not downstream effectors of the PKC1-MAP kinase pathway can suppress defects conferred by sth1-3ts, suggesting that RSC functions in an alternative PKC1-dependent pathway. Moreover, sth1-3ts cells display defects in actin cytoskeletal rearrangements and are hypersensitive to the microtubule depolymerizing drug, TBZ; both of these defects can be corrected by the high-copy suppressors. Together, these data reveal an important functional connection between the RSC remodeler and PKC1-dependent signaling in regulating the cellular architecture.  相似文献   

20.
We isolated a novel yeast alpha-COP mutant, ret1-3, in which alpha-COP is degraded after cells are shifted to a restrictive temperature. ret1-3 cells cease growth at 28 degrees C and accumulate the ER precursor of carboxypeptidase Y (p1 CPY). In a screen for high copy suppressors of these defects, we isolated the previously unidentified yeast epsilon-COP gene. epsilon-COP (Sec28p) overproduction suppresses the defects of ret1-3 cells up to 34 degrees C, through stabilizing levels of alpha-COP. Surprisingly, cells lacking epsilon-COP (sec28 Delta) grow well up to 34 degrees C and display normal trafficking of carboxypeptidase Y and KKXX-tagged proteins at a permissive temperature. epsilon-COP is thus non-essential for yeast cell growth, but sec28 Delta cells are thermosensitive. In sec28 Delta cells shifted to 37 degrees C, wild-type alpha-COP (Ret1p) levels diminish rapidly and cells accumulate p1 CPY; these defects can be suppressed by alpha-COP overproduction. Mutant coatomer from sec28 Delta cells behaves as an unusually large protein complex in gel filtration experiments. The sec28 Delta mutation displays allele-specific synthetic-lethal interactions with alpha-COP mutations: sec28 Delta ret1-3 double mutants are unviable at all temperatures, whereas sec28 Delta ret1-1 double mutants grow well up to 30 degrees C. Our results suggest that a function of epsilon-COP is to stabilize alpha-COP and the coatomer complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号