首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes the phase response curve (PRC), the effect of light on Fos immunoreactivity (Fos-IR) in the suprachiasmatic nucleus (SCN), and the effect of SCN lesions on circadian rhythms in the murid rodent, Arvicanthis niloticus. In this species, all individuals are diurnal when housed without a running wheel, but running in a wheel induces a nocturnal pattern in some individuals. First, the authors characterized the PRC in animals with either the nocturnal or diurnal pattern. Both groups of animals were less affected by light during the middle of the subjective day than during the night and were phase delayed and phase advanced by pulses in the early and late subjective night, respectively. Second, the authors characterized the Fos response to light at circadian times 5, 14, or 22. Light induced an increase in Fos-IR within the SCN during the subjective night but not subjective day; this effect was especially pronounced in the ventral SCN, where retinal inputs are most concentrated, but was also evident in other regions. Both light and time influenced Fos-IR within the lower subparaventricular area. Third, SCN lesions caused animals to become arrhythmic when housed in a light-dark cycle as well as constant darkness. In summary, Arvicanthis appear to be very similar to nocturnal rodents with respect to their PRC, temporal patterns of light-induced Fos expression in the SCN, and the effects of SCN lesions on activity rhythms.  相似文献   

2.
The underlying neural causes of the differences between nocturnal and diurnal animals with respect to their patterns of rhythmicity have not yet been identified. These differences could be due to differences in some subpopulation of neurons within the suprachiasmatic nucleus (SCN) or to differences in responsiveness to signals emanating from the SCN. The experiments described in this article were designed to address the former hypothesis by examining Fos expression within vasopressin (VP) neurons in the SCN of nocturnal and diurnal rodents. Earlier work has shown that within the SCN of the diurnal rodent Arvicanthis niloticus, approximately 30% of VP-immunoreactive (IR) neurons express Fos during the day, whereas Fos rarely is expressed in VP-IR neurons in the SCN of nocturnal rats. However, in earlier studies, rats were housed in constant darkness and pulsed with light, whereas Arvicanthis were housed in a light:dark (LD) cycle. To provide data from rats that would permit comparisons with A. niloticus, the first experiment examined VP/Fos double labeling in the SCN of rats housed in a 12:12 LD cycle and perfused 4 h into the light phase or 4 h into the dark phase. Fos was significantly elevated in the SCN of animals sacrificed during the light compared to the dark phase, but virtually no Fos at either time was found in VP-IR neurons, confirming that the SCN of rats and diurnal Arvicanthis are significantly different in this regard. The authors also evaluated the relationship between this aspect of SCN function and diurnality by examining Fos-IR and VP-IR in diurnal and nocturnal forms of Arvicanthis. In this species, most individuals exhibit diurnal wheel-running rhythms, but some exhibit a distinctly different and relatively nocturnal pattern. The authors have bred their laboratory colony for this trait and used animals with both patterns in this experiment. They examined Fos expression within VP-IR neurons in the SCN of both nocturnal and diurnal A. niloticus kept on a 12:12 LD cycle and perfused 4 h into the light phase or 4 h into the dark phase, and brains were processed for immunohistochemical identification of Fos and VP. Both the total number of Fos-IR cells and the proportion of VP-IR neurons containing Fos (20%) were higher during the day than during the night. Neither of these parameters differed between nocturnal and diurnal animals. The implications of these findings are discussed.  相似文献   

3.
The role of the intergeniculate leaflet of the thalamus (IGL) in photoperiod responsiveness was examined in a laboratory-selected line of photoperiod nonresponsive (NR) Siberian hamsters. NR hamsters fail to exhibit typical winter-type responses (i.e., gonadal regression and development of winter-type pelage) when exposed to short day lengths (e.g., 10 h of light/day). Earlier studies revealed that NR hamsters will exhibit winter-type responses when exposed to short photoperiod if they are given free access to a running wheel. The present study tested the hypothesis that this locomotor activity-induced reversal of phenotype is dependent on the IGL. Male NR hamsters underwent destruction of the IGL prior to being housed in short day lengths in cages equipped with running wheels. Activity rhythms were monitored for 8 weeks, after which time pelage response and paired testes weights were obtained. In contrast to sham-operated NR animals given access to running wheels, IGL-ablated animals showed no increase in the duration of nocturnal running wheel activity and became active later in the night than sham-lesioned animals. Lesioned animals also failed to exhibit the typical short photoperiod-induced gonadal regression and pelage molt. The results implicate the IGL in the mechanism by which running wheel activity can influence photoperiodic responses.  相似文献   

4.
The geniculohypothalamic tract (GHT) is a projection from the intergeniculate leaflet to the suprachiasmatic nucleus (SCN). The GHT exhibits neuropeptide Y (NPY) immunoreactivity and appears to communicate photic information to the SCN. Microinjection of NPY into the SCN has been found to phase shift circadian rhythms of hamsters housed in constant light in a manner similar to the phase shifts produced by pulses of darkness or triazolam injections. In the present study, NPY was injected into the SCN of Syrian hamsters housed in constant darkness and was found to produce phase shifts similar to those seen in hamsters housed in constant light. Microinjections were not followed by wheel running during the subjective day (the time when NPY microinjections are followed by significant phase advances). These data suggest that NPY produces phase shifts by some mechanism other than by inducing wheel running or by inhibiting the response of SCN neurons to light and supports a role for NPY in nonphotic shifting of the circadian clock.  相似文献   

5.
In a laboratory population of unstriped Nile grass rats, Arvicanthis niloticus, individuals with two distinctly different patterns of wheel-running exist. One is diurnal and the other is relatively nocturnal. In the first experiment, the authors found that these patterns are strongly influenced by parentage and by sex. Specifically, offspring of two nocturnal parents were significantly more likely to express a nocturnal pattern of wheel-running than were offspring of diurnal parents, and more females than males were nocturnal. In the second experiment, the authors found that diurnal and nocturnal wheel-runners were indistinguishable with respect to the timing of postpartum mating, which always occurred in the hours before lights-on. Here they also found that both juvenile and adult A. niloticus exhibited diurnal patterns of general activity when housed without a wheel, even if they exhibited nocturnal activity when housed with a wheel. In the third experiment, the authors discovered that adult female A. niloticus with nocturnal patterns of wheel-running were also nocturnal with respect to general activity and core body temperature when a running wheel was available, but they were diurnal when the running wheel was removed. Finally, a field study revealed that all A. niloticus were almost exclusively diurnal in their natural habitat. Together these results suggest that individuals of this species are fundamentally diurnal but that access to a running wheel shifts some individuals to a nocturnal pattern.  相似文献   

6.
Light influences the daily patterning of behavior by entraining circadian rhythms and through its acute effects on activity levels (masking). Mechanisms of entrainment are quite similar across species, but masking can be very different. Specifically, in diurnal species, light generally increases locomotor activity (positive masking), and in nocturnal ones, it generally suppresses it (negative masking). The intergeniculate leaflet (IGL), a subdivision of the lateral geniculate complex, receives direct retinal input and is reciprocally connected with the primary circadian clock, the suprachiasmatic nucleus (SCN). Here, we evaluated the influence of the IGL on masking and the circadian system in a diurnal rodent, the Nile grass rat (Arvicanthis niloticus), by determining the effects of bilateral IGL lesions on general activity under different lighting conditions. To examine masking responses, light or dark pulses were delivered in the dark or light phase, respectively. Light pulses at Zeitgeber time (ZT) 14 increased activity in control animals but decreased it in animals with IGL lesions. Dark pulses had no effect on controls, but significantly increased activity in lesioned animals at ZT0. Lesions also significantly increased activity, primarily during the dark phase of a 12:12 light/dark cycle, and during the subjective night when animals were kept in constant conditions. Taken together, our results suggest that the IGL plays a vital role in the maintenance of both the species-typical masking responses to light, and the circadian contribution to diurnality in grass rats.  相似文献   

7.
It is known that day-active Nile grass rats, Arvicanthis niloticus, increase the amount of activity in the night relative to that in the day when provided with running wheels. This was confirmed in the present study. Animals without a wheel displayed 69.0% of their general activity in the L phase of a 12:12 h light-dark cycle; animals provided with wheels had only 48.6% of their wheel revolutions in the light. The contribution of direct (masking) responses to light to the increased nocturnality of animals with wheels was examined in two experiments. In experiment 1, masking was tested by exposing the animals to repeated cycles of 30 min of entraining light and 30 min of a different, usually dimmer light, during the L phase of a 12:12 h light-dark cycle. For animals with wheels, there was more running during the 30-min pulses of dim light or darkness than during the 30-min periods of entraining light. In contrast, for animals without wheels, there was more general activity during the 30-min periods of entraining light than during the 30-min pulses of dim light or darkness. In experiment 2, the animals were first exposed to a 12:12 h light-dark cycle and then put on a 1:10:1:12 h LDLD skeleton photoperiod. Animals with wheels increased their running during the subjective day of the skeleton photoperiod compared to that in the actual day of the 12:12 h light-dark cycle. Animals without wheels showed similar levels of general activity during the subjective day of the skeleton photoperiod and the actual day of the 12:12 h cycle. These experiments demonstrate that when Nile rats have running wheels, their increased nocturnal activity is associated with an increased suppression of locomotion in direct response to light. It is possible that changes in masking responses to light may be an essential and integral component of switching between diurnal and nocturnal activity profiles.  相似文献   

8.
Little is known about the differences in the neural substrates of circadian rhythms that are responsible for the maintenance of differences between diurnal and nocturnal patterns of activity in mammals. In both groups of animals, the suprachiasmatic nucleus (SCN) functions as the principal circadian pacemaker, and surprisingly, several correlates of neuronal activity in the SCN show similar daily patterns in diurnal and nocturnal species. In this study, immunocytochemistry was used to monitor daily fluctuations in the expression of the nuclear phosphoprotein Fos in the SCN and in hypothalamic targets of the SCN axonal outputs in the nocturnal laboratory rat and in the diurnal murid rodent, Arvicanthis niloticus. The daily patterns of Fos expression in the SCN were very similar across the two species. However, clear species differences were seen in regions of the hypothalamus that receive inputs from the SCN including the subparaventricular zone. These results indicate that differences in the circadian system found downstream from the SCN contribute to the emergence of a diurnal or nocturnal profile in mammals.  相似文献   

9.
The brain’s biological clock, located in the suprachiasmatic nucleus (SCN), is synchronised with the cyclic environment by photic and non-photic cues. Photic information to the SCN is mediated by pituitary adenylate-cyclase-activating polypeptide (PACAP)-containing retinal ganglion cells (RGCs), whereas non-photic input originates primarily from neuropeptide Y (NPY) cells in the ipsilateral thalamic intergeniculate leaflet (IGL). RGCs also seem to project to the IGL, indicating a role for this structure in the integration of photic and non-photic inputs related to the resetting of the biological clock. In the present study, we have used anterograde tracing from both eyes, bilateral eye enucleation, double-immunofluorescence histochemistry, high-resolution confocal laser scanning microscopy and three-dimensional computer analysis to show that (1) PACAP-containing RGCs project to the IGL and are the only source for the PACAP-immunoreactive fibres in the IGL; (2) a few NPY-containing neurons in the IGL are innervated by PACAP-containing retinal nerve fibres and the contacts are both axodendritic and axosomatic; (3) most enkephalin-immunoreactive neurons in the IGL are innervated by PACAP-containing retinal afferents and the contacts are mainly axodendritic; (4) light stimulation at various time points activates (as evidenced by c-Fos induction) enkephalin-positive neurons but not NPY-immunoreactive neurons. The findings suggest that PACAP-immunoreactive retinal afferents in the IGL primarily innervate enkephalin-immunoactive neurons and that the enkephalin-containing neurons, which project locally and to the contralateral IGL, are activated by light independent of diurnal time. This study was supported by the Danish Biotechnology Centre for Cellular Communication and The Danish Medical Research Council (no. 22-04-0667).  相似文献   

10.
ABSTRACT

Diurnality in rodents is relatively rare and occurs primarily in areas with low nighttime temperatures such as at high altitudes and desert areas. However, many factors can influence temporal activity rhythms of animals, both in the field and the laboratory. The temporal activity patterns of the diurnal ice rat were investigated in the laboratory with, and without, access to running wheels, and in constant conditions with running wheels. Ice rats appeared to be fundamentally diurnal but used their running wheels during the night. In constant conditions, general activity remained predominantly diurnal while wheel running was either nocturnal or diurnal. In some animals, entrainment of the wheel running rhythm was evident, as demonstrated by free-running periods that were different from 24 h. In other animals, the wheel running activity abruptly switched from nocturnal to subjective day as soon as the animals entered DD, and reverted back to nocturnal once returned to LD, suggesting the rhythms were masked by light. Wheel running rhythms appears to be less robust and more affected by light compared to general activity rhythms. In view of present and future environmental changes, the existence of more unstable activity rhythms that can readily switch between temporal niches might be crucial for the survival of the species.  相似文献   

11.
The circadian clock of mammals, located in the suprachiasmatic nuclei (SCN) of the hypothalamus, has been demonstrated to integrate day length change from long (LP) to short photoperiod (SP). This photoperiodic change induces in Syrian hamsters a testicular regression through melatonin action, a phenomenon that is inhibited when hamsters have free access to a wheel. The intergeniculate leaflets (IGL), which modulate the integration of photoperiod by the SCN, are a key structure in the circadian system, conveying nonphotic information such as those induced by novelty-induced wheel running activity. We tested in hamsters transferred from LP to a cold SP the effects of wheel running activity on a photoperiod-dependent behavior, hibernation. Lesions of the IGL were done to test the role of this structure in the inhibition induced by exercise of photoperiod integration by the clock. We show that wheel running activity actually inhibits hibernation not only in sham-operated animals, but also in hamsters with a bilateral IGL lesion (IGLX). In contrast, IGL-X hamsters without a wheel integrate slower to the SP but hibernate earlier compared with sham-operated animals. Moreover, some hibernation characteristics are affected by IGL lesion. Throughout the experiment at 7 degrees C, IGL-X hamsters were in hypothermia during 18% of the experiment vs. 32% for sham-operated hamsters. Taken together, these data show that the IGL play a modulatory role in the integration of photoperiodic cues and modulate hibernation, but they are not implicated in the inhibition of hibernation induced by wheel running activity.  相似文献   

12.
Abstract

The suprachiasmatic nuclei (SCN) contain the endogenous mammalian circadian pacemaker, which generates the circadian rhythm in locomotor activity. In Syrian hamsters with free‐running rhythms, the onset of running‐wheel activity is very precise and predictable while the end (offset) is more variable. From the thalamic intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (vLGN) a projection to the SCN originates. Animals with a lesion aimed at the IGL/vLGN and sham‐and unoperated controls were kept in continuous darkness. With linear regression, lines were fitted through 10 successive onsets and offsets of activity and the mean deviation of the onsets and offsets from the fitted lines was determined. Animals with a complete or partial lesion of the IGL/vLGN had a smaller mean deviation of the circadian activity offset from the fitted regression line (0.313 h) compared with the grouped control animals (0.678 h). To test the difference statistically, we compared the sum of the square residuals of the circadian offsets between the groups. This difference was highly significant (F(69,64)=4.16, p<0.0001), which indicates that animals with a lesion of the IGL/ vLGN have a less variable circadian offset of running‐wheel activity. No differences were observed in the variability in the circadian onset of locomotor activity between experimental and control animals. It is concluded that the IGL/vLGN influence the variability of the offset of the circadian running‐wheel activity.  相似文献   

13.
ABSTRACT

Daily rhythms in light exposure influence the expression of behavior by entraining circadian rhythms and through its acute effects on behavior (i.e., masking). Importantly, these effects of light are dependent on the temporal niche of the organism; for diurnal organisms, light increases activity, whereas for nocturnal organisms, the opposite is true. Here we examined the functional and morphological differences between diurnal and nocturnal rodents in retinorecipient brain regions using Nile grass rats (Arvicanthis niloticus) and Sprague-Dawley (SD) rats (Rattus norvegicus), respectively. We established the presence of circadian rhythmicity in cFOS activation in retinorecipient brain regions in nocturnal and diurnal rodents housed in constant dark conditions to highlight different patterns between the temporal niches. We then assessed masking effects by comparing cFOS activation in constant darkness (DD) to that in a 12:12 light/dark (LD) cycle, confirming light responsiveness of these regions during times when masking occurs in nature. The intergeniculate leaflet (IGL) and olivary pretectal nucleus (OPN) exhibited significant variation among time points in DD of both species, but their expression profiles were not identical, as SD rats had very low expression levels for most timepoints. Light presentation in LD conditions induced clear rhythms in the IGL of SD rats but eliminated them in grass rats. Additionally, grass rats were the only species to demonstrate daily rhythms in LD for the habenula and showed a strong response to light in the superior colliculus. Structurally, we also analyzed the volumes of the visual brain regions using anatomical MRI, and we observed a significant increase in the relative size of several visual regions within diurnal grass rats, including the lateral geniculate nucleus, superior colliculus, and optic tract. Altogether, our results suggest that diurnal grass rats devote greater proportions of brain volume to visual regions than nocturnal rodents, and cFOS activation in these brain regions is dependent on temporal niche and lighting conditions.  相似文献   

14.
Photic induction of immediate early genes including c-fos in the suprachiasmatic nucleus (SCN) has been well demonstrated in the nocturnal rodents. On the other hand, in diurnal rodents, no data is available whether the light can induce c-fos or Fos in the SCN. We therefore examined whether 60 min light exposure induces Fos-like immunoreactivity (Fos-lir) in the SCN cells of diurnal chipmunks and whether the induction is phase dependent, comparing with the results in nocturnal hamsters. We also examined an effect of light on the locomotor activity rhythm under continuous darkness. Fos-lir was induced in the chipmunk SCN. The induction was clearly phase dependent. The light during the subjective night induced strong expression of Fos-lir. This phase dependency is similar to that in hamsters. However, unlike in hamsters, the Fos-lir was induced in some SCN cells of chipmunks exposed to light during the subjective day. In the locomotor rhythm, on the other hand, the light pulse failed to induce the phase shift at phases at which the Fos-lir was induced. These results suggest that the photic induction of Fos-lir in the diurnal chipmunks is gated by a circadian oscillator as well as in the nocturnal hamsters. However, the functional role of Fos protein may be different in the diurnal rodents from in the nocturnal rodents.  相似文献   

15.
Most mammals show daily rhythms in sleep and wakefulness controlled by the primary circadian pacemaker, the suprachiasmatic nucleus (SCN). Regardless of whether a species is diurnal or nocturnal, neural activity in the SCN and expression of the immediate-early gene product Fos increases during the light phase of the cycle. This study investigated daily patterns of Fos expression in brain areas outside the SCN in the diurnal rodent Arvicanthis niloticus. We specifically focused on regions related to sleep and arousal in animals kept on a 12:12-h light-dark cycle and killed at 1 and 5 h after both lights-on and lights-off. The ventrolateral preoptic area (VLPO), which contained cells immunopositive for galanin, showed a rhythm in Fos expression with a peak at zeitgeber time (ZT) 17 (with lights-on at ZT 0). Fos expression in the paraventricular thalamic nucleus (PVT) increased during the morning (ZT 1) but not the evening activity peak of these animals. No rhythm in Fos expression was found in the centromedial thalamic nucleus (CMT), but Fos expression in the CMT and PVT was positively correlated. A rhythm in Fos expression in the ventral tuberomammillary nucleus (VTM) was 180 degrees out of phase with the rhythm in the VLPO. Furthermore, Fos production in histamine-immunoreactive neurons of the VTM cells increased at the light-dark transitions when A. niloticus show peaks of activity. The difference in the timing of the sleep-wake cycle in diurnal and nocturnal mammals may be due to changes in the daily pattern of activity in brain regions important in sleep and wakefulness such as the VLPO and the VTM.  相似文献   

16.
The suprachiasmatic nucleus (SCN) of the hypothalamus houses the main mammalian circadian clock. This clock is reset by light-dark cues and stimuli that evoke arousal. Photic information is relayed directly to the SCN via the retinohypothalamic tract (RHT) and indirectly via the geniculohypothalamic tract, which originates from retinally innervated cells of the thalamic intergeniculate leaflet (IGL). In addition, pathways from the dorsal and median raphe (DR and MR) convey arousal state information to the IGL and SCN, respectively. The SCN regulates many physiological events in the body via a network of efferent connections to areas of the brain such as the habenula (Hb) in the epithalamus, subparaventricular zone (SPVZ) of the hypothalamus and locus coeruleus of the brainstem-areas of the brain associated with arousal and behavioral activation. Substance P (SP) and the neurokinin-1 (NK-1) receptor are present in the rat SCN and IGL, and SP acting via the NK-1 receptor alters SCN neuronal activity and resets the circadian clock in this species. However, the distribution and role of SP and NK-1 in the circadian system of other rodent species are largely unknown. Here we use immunohistochemical techniques to map the novel distribution of SP and NK-1 in the hypothalamus, thalamus and brainstem of the Alaskan northern red-backed vole, Clethrionomys rutilus, a species of rodent currently being used in circadian biology research. Interestingly, the pattern of immunoreactivity for SP in the red-backed vole SCN was very different from that seen in many other nocturnal and diurnal rodents.  相似文献   

17.
The vast majority of neurons in the suprachiasmatic nucleus (SCN), the primary circadian pacemaker in mammals, contain the inhibitory neurotransmitter GABA. Most studies investigating the role of GABA in the SCN have been performed using nocturnal rodents. Activation of GABA(A) receptors by microinjection of muscimol into the SCN phase advances the circadian activity rhythm of nocturnal rodents, but only during the subjective day. Nonphotic stimuli that reset the circadian pacemaker of nocturnal rodents also produce phase advances during the subjective day. The role of GABA in the SCN of diurnal animals and how it may differ from nocturnal animals is not known. In the studies described here, the GABA(A) agonist muscimol was microinjected directly into the SCN region of diurnal unstriped Nile grass rats (Arvicanthis niloticus) at various times in their circadian cycle. The results demonstrate that GABA(A) receptor activation produces large phase delays during the subjective day in grass rats. Treatment with TTX did not affect the ability of muscimol to induce phase delays, suggesting that muscimol acts directly on pacemaker cells within the SCN. These data suggest that the circadian pacemakers of nocturnal and diurnal animals respond to the most abundant neurochemical signal found in SCN neurons in opposite ways. These findings are the first to demonstrate a fundamental difference in the functioning of circadian pacemaker cells in diurnal and nocturnal animals.  相似文献   

18.
Syrian hamsters with intergeniculate leaflet or sham lesions were given tests with a series of light pulses of gradually decreasing intensities. The light pulses were given early in the night, at zeitgeber time 14–15. The amount of wheel running during the pulses was compared to that in the same hour on a night with no light pulses. Hamsters with intergeniculate leaflet lesions showed a significantly greater suppression of their wheel running in response to light than the sham-lesioned animals. The lesioned animals also had larger negative phase angles of entrainment to the 14:10-h light-dark cycle than sham-operated controls. However, phase shifting in response to light pulses at either zeitgeber time 14 or 18 was not significantly altered by the lesions. Preferences for spending more time in a dark than a light area were not abolished by the lesions. It is concluded that the intergeniculate leaflet in the Syrian hamster cannot be of paramount importance for masking of locomotor activity by light but may play a modulating role. Accepted: 30 January 1999  相似文献   

19.
视网膜中的自主感光神经节细胞   总被引:2,自引:0,他引:2  
视网膜中少数神经节细胞能够合成感光蛋白--黑视素(melanopsin),因此具备了自主感光的能力,被称为自主感光神经节细胞(intrinsically photosensitive retinal ganglion cells,ipRGCs).ipRGCs可根据树突形态和分层位置的差异分为五个不同的亚型,其轴突主要投...  相似文献   

20.
Loss of Dexras1 in gene-targeted mice impairs circadian entrainment to light cycles and produces complex changes to phase-dependent resetting responses (phase shifts) to light. The authors now describe greatly enhanced and phase-specific nonphotic responses induced by arousal in dexras1(-/-) mice. In constant conditions, mutant mice exhibited significant arousal-induced phase shifts throughout the subjective day. Unusual phase advances in the late subjective night were also produced when arousal has little effect in mice. Bilateral lesions of the intergeniculate leaflet (IGL) completely eliminated both the nonphotic as well as the light-induced phase shifts of circadian locomotor rhythms during the subjective day, but had no effect on nighttime phase shifts. The expression of FOS-like protein in the suprachiasmatic nucleus (SCN) was not affected by either photic or nonphotic stimulation in the subjective day in either genotype. Therefore, the loss of Dexras1 (1) enhances nonphotic phase shifts in a phase-dependent manner, and (2) demonstrates that the IGL in mice is a primary mediator of circadian phase-resetting responses to both photic and nonphotic events during the subjective day, but plays a different functional role in the subjective night. Furthermore, (3) the change in FOS level does not appear to be a critical step in the entrainment pathways for either light or arousal during the subjective day. The cumulative evidence suggests that Dexras1 regulates multiple photic and nonphotic signal-transduction pathways, thereby playing an essential role modulating species-specific characteristics of circadian entrainment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号