首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eom H  Lee CG  Jin E 《Planta》2006,223(6):1231-1242
The unicellular green alga Haematococcus pluvialis (Volvocales) is known for the ketocarotenoid astaxanthin (3, 3′-dihydroxy-β, β-carotene-4, 4′-dione) accumulation, which is induced under unfavorable culture conditions. In this work, we used cDNA microarray analysis to screen differentially expressed genes in H. pluvialis under astaxanthin-inductive culture conditions, such as combination of cell exposure to high irradiance and nutrient deprivation. Among the 965 genes in the cDNA array, there are 144 genes exhibiting differential expression (twofold changes) under these conditions. A significant decrease in the expression of photosynthesis-related genes was shown in astaxanthin-accumulating cells (red cells). Defense- or stress-related genes and signal transduction genes were also induced in the red cells. A comparison of microarray and real-time PCR analysis showed good correlation between the differentially expressed genes by the two methods. Our results indicate that the cDNA microarray approach, as employed in this work, can be relied upon and used to monitor gene expression profiles in H. pluvialis. In addition, the genes that were differentially expressed during astaxanthin induction are suitable candidates for further study and can be used as tools for dissecting the molecular mechanism of this unique pigment accumulation process in the green alga H. pluvialis. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

2.
3.

Background  

Environmental modulation of gene expression in Yersinia pestis is critical for its life style and pathogenesis. Using cDNA microarray technology, we have analyzed the global gene expression of this deadly pathogen when grown under different stress conditions in vitro.  相似文献   

4.
Whole genome sequencing of the model white rot basidiomycete Phanerochaete chrysosporium has revealed the largest P450 contingent known to date in fungi, along with related phase I and phase II metabolic genes and signaling cascade genes. As a part of their functional characterization, genome-wide expression profiling under physiologically distinct conditions, nutrient-limited (ligninolytic) and nutrient-rich (non-ligninolytic), was investigated using a custom-designed 70-mer oligonucleotide microarray developed based on 190 target genes and 23 control genes. All 150 P450 genes were found to be expressible under the test conditions, with 27 genes showing differential expression based on a >twofold arbitrary cut-off limit. Of these, 23 P450 genes were upregulated (twofold to ninefold) in defined high-nitrogen cultures whereas four genes were upregulated (twofold to twentyfold) in defined low-nitrogen cultures. Furthermore, tandem P450 member genes in ten of the 16 P450 genomic clusters showed nonassortative regulation of expression reflecting their functional diversity. Full-length cDNAs for two of the high-nitrogen upregulated genes pc-hn1 (CYP5035A1) and pc-hn2 (CYP5036A1) and partial cDNA for a low-nitrogen upregulated gene pc-ln1 (CYP5037A1) were cloned and characterized. The study provided first molecular evidence for the presence of active components of the cAMP- and MAP kinase-signaling pathways in a white rot fungus; four of these components (cpka and ste-12 of cAMP pathway and two MAP kinases, mps1 and sps1) were significantly upregulated (fourfold to eightfold) under nutrient-limited conditions, implying their likely role in the regulation of gene expression involved in secondary metabolism and biodegradation processes under these conditions.  相似文献   

5.
Shi MZ  Xie DY 《Planta》2011,233(4):787-805
We report metabolic engineering of Arabidopsis red cells and genome-wide gene expression analysis associated with anthocyanin biosynthesis and other metabolic pathways between red cells and wild-type (WT) cells. Red cells of A. thaliana were engineered for the first time from the leaves of production of anthocyanin pigment 1-Dominant (pap1-D). These red cells produced seven anthocyanin molecules including a new one that was characterized by LC–MS analysis. Wild-type cells established as a control did not produce anthocyanins. A genome-wide microarray analysis revealed that nearly 66 and 65% of genes in the genome were expressed in the red cells and wild-type cells, respectively. In comparison with the WT cells, 3.2% of expressed genes in the red cells were differentially expressed. The expression levels of 14 genes involved in the biosynthetic pathway of anthocyanin were significantly higher in the red cells than in the WT cells. Microarray and RT-PCR analyses demonstrated that the TTG1–GL3/TT8–PAP1 complex regulated the biosynthesis of anthocyanins. Furthermore, most of the genes with significant differential expression levels in the red cells versus the WT cells were characterized with diverse biochemical functions, many of which were mapped to different metabolic pathways (e.g., ribosomal protein biosynthesis, photosynthesis, glycolysis, glyoxylate metabolism, and plant secondary metabolisms) or organelles (e.g., chloroplast). We suggest that the difference in gene expression profiles between the two cell lines likely results from cell types, the overexpression of PAP1, and the high metabolic flux toward anthocyanins.  相似文献   

6.
Roots in the soil are illuminated by far‐red (FR) light passed through plant tissues in the daytime, and are in complete darkness at night. To evaluate whether gene expression of roots is affected by a dark‐FR light cycle, gene expression profiles were analysed for dark‐adapted versus light‐grown plants and for FR light‐illuminated versus dark‐adapted plants using the RIKEN Arabidopsis full‐length cDNA microarray (containing approximately 7000 independent, full‐length cDNA groups). Among candidate dark‐ and FR‐regulated genes, several were further analysed. Eleven dark‐inducible and five dark‐repressed genes were characterized. Almost all the dark‐inducible and –repressed genes were oppositely regulated by FR light illumination. The functions of dark‐ and FR‐responsive genes and the significance of FR light‐regulated gene expression in roots under ground are discussed.  相似文献   

7.
Astaxanthin production is commonly induced under stress conditions such as nutrient deficiency (N or P), high light stress, and variations of temperature, high NaCl concentrations, and other factors. The objective of the present study is the analysis of the effect of oxidative stress by sodium orthovanadate (SOV), a nonspecific inhibitor of protein tyrosine phosphatases, on the cells growth and astaxanthin production of H. lacustris. In the presence of SOV (lower than 5.0 mM), maximum growth of H. lacustris obtained was 2.4 × 105 cells/mL in MBBM medium at 24°C under continuous illumination (40 μE/m2/s) of white fluorescent light, with continuous aeration of CO2 (0.2 vvm). Total carotenoids accumulated per cell biomass unit treated with 2.5 mM SOV has approximately shown 2.5 folds higher than the control after short period of SOV induction time as 2 days, despite that cells were grown under normal light. Meanwhile, maximal astaxanthin production from H. lacustris was 10.7 mg/g biomass in MBBM with 5 days of continuous illumination at 40 μE/m2/s, which has been established as optimal light intensity for the control culture of H. lacustris. Treating algae H. lacustris with sodium orthovanadate showed promoting the accumulation of astaxanthin by advancing either the inhibition of dephosphorylation or synthesis of ATP. Its potential role of PTPases in microalgae H. lacustris is discussed. The first two authors are equally contributed to this work.  相似文献   

8.
9.
DNA microarrays were used to study the gene expression profile of Escherichia coli JM109 and K12 biofilms. Both glass wool in shake flasks and mild steel 1010 plates in continuous reactors were used to create the biofilms. For the biofilms grown on glass wool, 22 genes were induced significantly (p0.05) compared to suspension cells, including several genes for the stress response (hslS, hslT, hha, and soxS), type I fimbriae (fimG), metabolism (metK), and 11 genes of unknown function (ybaJ, ychM, yefM, ygfA, b1060, b1112, b2377, b3022, b1373, b1601, and b0836). The DNA microarray results were corroborated with RNA dot blotting. For the biofilm grown on mild steel plates, the DNA microarray data showed that, at a specific growth rate of 0.05/h, the mature biofilm after 5 days in the continuous reactors did not exhibit differential gene expression compared to suspension cells although genes were induced at 0.03/h. The present study suggests that biofilm gene expression is strongly associated with environmental conditions and that stress genes are involved in E. coli JM109 biofilm formation.  相似文献   

10.
11.
Cotton (Gossypium hirsutum L.) is a major crop and the main source of natural fiber worldwide. Because various abiotic and biotic stresses strongly influence cotton fiber yield and quality, improved stress resistance of this crop plant is urgently needed. In this study, we used Gateway technology to construct a normalized full‐length cDNA overexpressing (FOX) library from upland cotton cultivar ZM12 under various stress conditions. The library was transformed into Arabidopsis to produce a cotton‐FOX‐Arabidopsis library. Screening of this library yielded 6,830 transgenic Arabidopsis lines, of which 757 were selected for sequencing to ultimately obtain 659 cotton ESTs. GO and KEGG analyses mapped most of the cotton ESTs to plant biological process, cellular component, and molecular function categories. Next, 156 potential stress‐responsive cotton genes were identified from the cotton‐FOX‐Arabidopsis library under drought, salt, ABA, and other stress conditions. Four stress‐related genes identified from the library, designated as GhCAS, GhAPX, GhSDH, and GhPOD, were cloned from cotton complementary DNA, and their expression patterns under stress were analyzed. Phenotypic experiments indicated that overexpression of these cotton genes in Arabidopsis affected the response to abiotic stress. The method developed in this study lays a foundation for high‐throughput cloning and rapid identification of cotton functional genes.  相似文献   

12.
During their many millions of years of evolution in the extreme and stable cold, Antarctic notothenioid fishes have acquired profoundly cold-adapted physiologies. Gene expression profiling via cDNA microarray was used to determine the extent to which one species of notothenioid, Trematomus bernacchii, has retained the ability to alter gene expression in response to heat stress. While an inability to up-regulate the expression of any size class of heat shock proteins (except for a 1.1-fold induction of the co-chaperone Hsp40) was observed, hundreds of additional genes, associated with a broad range of cellular processes, were responsive to heat. Many of these genes are associated with central aspects of the evolutionarily conserved cellular stress response (CSR), which plays a pivotal role in responding to physical and chemical stresses. The inability of T. bernacchii to mount a heat shock response underscores the potential susceptibility of this species to the effects of global warming.  相似文献   

13.
14.
15.
16.
17.
18.
In industrial process, yeast cells are exposed to ethanol stress that affects the cell growth and the productivity. Thus, investigating the intracellular state of yeast cells under high ethanol concentration is important. In this study, using DNA microarray analysis, we performed comprehensive expression profiling of two strains of Saccharomyces cerevisiae, i.e., the ethanol-adapted strain that shows active growth under the ethanol stress condition and its parental strain used as the control. By comparing the expression profiles of these two strains under the ethanol stress condition, we found that the genes related to ribosomal proteins were highly up-regulated in the ethanol-adapted strain. Further, genes related to ATP synthesis in mitochondria were suggested to be important for growth under ethanol stress. We expect that the results will provide a better understanding of ethanol tolerance of yeast. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Wang Z  Liang Y  Li C  Xu Y  Lan L  Zhao D  Chen C  Xu Z  Xue Y  Chong K 《Plant molecular biology》2005,58(5):721-737
In flowering plants, anthers bear male gametophytes whose development is regulated by the elaborate coordination of many genes. In addition, both gibberellic acid (GA3) and jasmonic acid (JA) play important roles in anther development and pollen fertility. To facilitate the analysis of anther development genes and how GA3 and JA regulate anther development, we performed microarray experiments using a 10-K cDNA microarray with probes derived from seedlings, meiotic anthers, mature anthers and GA3- or JA-treated suspension cells of rice. The expression level change of 2155 genes was significantly (by 2-fold or greater) detected in anthers compared with seedlings. Forty-seven genes, representing genes with potential function in cell cycle and cell structure regulation, hormone response, photosynthesis, stress resistance and metabolism, were differentially expressed in meiotic and mature anthers. Moreover, 314 genes responded to either GA3 or JA treatment, and 24 GA3- and 82 JA-responsive genes showed significant changes in expression between meiosis and the mature anther stages. RT-PCR demonstrated that gene y656d05 was not only highly expressed in meiotic anthers but also induced by GA3. Strong RNA signals of y656d05 were detected in pollen mother cells and tapetum in in situ hybridization. Further characterization of these candidate genes can contribute to the understanding of the molecular mechanism of anther development and the involvement of JA and GA3 signals in the control of anther development in rice.  相似文献   

20.
The lignocellulosic crop Miscanthus spp. has been identified as a good candidate for biomass production. The responses of Miscanthus sinensis Anderss. to salinity were studied to satisfy the needs for high yields in marginal areas and to avoid competition with food production. The results indicated that the relative advantages of the tolerant accession over the sensitive one under saline conditions were associated with restricted Na+ accumulation in shoots. Seedlings of two accessions (salt-tolerant ‘JM0119’ and salt-sensitive ‘JM0099’) were subjected to 0 (control), 100, 200, and 300 mM NaCl stress to better understand the salt-induced biochemical responses of genes involved in Na+ accumulation in M. sinensis. The adaptation responses of genes encoding for Na+ /H+ antiporters, NHX1 and SOS1 to NaCl stress were examined in JM0119 and JM0099.The cDNA sequences of genes examined were highly conserved among the relatives of M. sinensis based on the sequencing on approximate 600 bp-long cDNA fragments obtained from degenerate PCR. These salt-induced variations of gene expression investigated by quantitative real-time PCR provided evidences for insights of the molecular mechanisms of salt tolerance in M. sinensis. The expression of NHX1 was up-regulated by salt stress in JM0119 shoot and root tissues. However, it was hardly affected in JM0099 shoot tissue except for a significant increase at the 100 mM salt treatment, and it was salt-suppressed in the JM0099 root tissue. In the root tissue, the expression of SOS1 was induced by the high salt treatment in JM0119 but repressed by all salt treatments in JM0099. Thus, the remarkably higher expression of NHX1 and SOS1 were associated with the resistance to Na+ toxicity by regulation of the Na+ influx, efflux, and sequestration under different salt conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号