首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
Proteins in intercellular washing fluid (IWF) from wheat (Triticum aestivum) and barley (Hordeum vulgare) leaves were separated by two-dimensional isoelectric focusing-polyacrylamide gel electrophoresis and stained with Coomassie brilliant blue (CBB) or silver. Intracellular protein from the cut ends of leaves accounted for only a small proportion of total protein in IWF from wheat leaves. When these were heavily infected with the stem rust fungus (Puccinia graminis f. sp. tritici) and grown at 19°C, four infection-related CBB-stainable proteins were detected in IWF.

To compare IWF proteins from wheat and barley leaves infected with the same pathogen, conditions were established that permitted luxuriant growth of stem rust of wheat in barley (exposure to chloroform before inoculation and maintenance at 25°C thereafter). Under these conditions, at least 10 infection-related silver-stainable proteins were detected in IWF from infected wheat in addition to the more than 50 that were of host origin. The electrophoretic properties of 8 of the infection-related proteins were the same as those of 8 infection-related proteins in IWF from barley.

IWF from wheat and barley grown under these conditions was analyzed for Concanavalin A-binding glycoproteins immobilized on nitrocellulose membrane replicas made from gels. Of the many infection-related glycoproteins that were detected in IWF from stem rust-affected wheat, approximately 20 occupied the same positions as those from stem rust-affected barley. The glycoprotein pattern of IWF prepared from wheat leaves grown at 19°C and infected with the leaf rust fungus (P. recondita f. sp. tritici) was markedly different to that of IWF from the same host infected with the stem rust fungus. We conclude that IWF from rust-affected cereal leaves may be a useful source of surface or extracellular proteins from the parasitic mycelium.

  相似文献   

5.
6.
7.
Single nucleotide polymorphisms (SNPs) are becoming the most amenable form of DNA-based molecular markers for genetic analysis. In hexaploid bread wheat (Triticum aestivum L.), it is difficult to discern true polymorphic SNPs due to homoeologous and paralogous genes. Two serial analysis of gene expression (SAGE) libraries were developed utilizing leaves from resistant plants carrying leaf rust resistance gene Lr28; one library was derived from leaves that were mock inoculated and the other was derived from leaves inoculated with the urediniospores of the leaf rust pathogen Puccinia triticina. Next-generation sequencing reads, after quality trimming and removal of fungal sequences, were mapped to wheat reference sequences at Ensembl Plants. CLC Genomics Workbench and Freebayes softwares were employed for SNP calling. A total of 611 SNPs were predicted to be common by both softwares, of which 207 varietal SNPs were identified by ConservedPrimer software. A subset of 100 SNPs was used for validation across 47 wheat genotypes using Kompetitive Allele Specific PCR (KASP) assay; 83 SNPs could be successfully validated. These SNPs were positioned on wheat subgenomes and chromosome arms. When functionally annotated, many sequences harboring SNPs showed homology to resistance and resistance-like genes listed in Plant Resistance Gene database (PRGdb) as well as pathogenesis-related (PR) and stress-responsive genes. The results of the present study involving discovery of SNPs associated with resistance to leaf rust, a major threat to wheat production worldwide, will be valuable for molecular breeding for rust resistance.  相似文献   

8.
M Liu  N Rodrigue  J Kolmer 《Heredity》2014,112(4):443-453
Co-evolution of fungal pathogens with their host species during the domestication of modern crop varieties has likely affected the current genetic divergence of pathogen populations. The objective of this study was to determine if the evolutionary history of the obligate rust pathogen on wheat, Puccinia triticina, is correlated with adaptation to hosts with different ploidy levels. Sequence data from 15 loci with different levels of polymorphism were generated. Phylogenetic analyses (parsimony, Bayesian, maximum likelihood) showed the clear initial divergence of P. triticina isolates collected from Aegilops speltoides (the likely B genome donor of modern wheat) in Israel from the other isolates that were collected from tetraploid (AB genomes) durum wheat and hexaploid (ABD genomes) common wheat. Coalescence-based genealogy samplers also indicated that P. triticina on A. speltoides, diverged initially, followed by P. triticina isolates from durum wheat in Ethiopia and then by isolates from common wheat. Isolates of P. triticina found worldwide on cultivated durum wheat were the most recently coalesced and formed a clade nested within the isolates from common wheat. By a relative time scale, the divergence of P. triticinia as delimited by host specificity appears very recent. Significant reciprocal gene flow between isolates from common wheat and isolates from durum wheat that are found worldwide was detected, in addition to gene flow from isolates on common wheat to isolates on durum wheat in Ethiopia.  相似文献   

9.
Plants have developed sophisticated mechanisms to combat pathogen infection. One of the acquired modes in response to pathogen attack is the production of the pathogenesis-related (PR) proteins. Our earlier studies reported that TaLr35PR1, a PR1 gene encoding a protein with conserved serine carboxypeptidase (SCP) domain, has been cloned from wheat near-isogenic line TcLr35. However, the involvement of TaLr35PR1 in wheat growth and Lr35-mediated adult resistance to Puccinia triticina remains unclear. Here, we showed that TaLr35PR1 was strongly induced by P. triticina in wheat plant containing Lr35 (TcLr35), in which the expression level of TaLr35PR1 significantly increased and reached the maximum at 12 hpi. The accumulations of TaLr35PR1 increased stably and showed significant peak challenged by P. triticina at different growth and development periods of TcLr35 wheat while it maintained similar level and changed little in mock inoculated. Western blotting was conducted to confirm that TaLr35PR1 protein was increasingly accumulated in the TcLr35 adult plants after P. triticina inoculation and maintained at a similar level from 120 to 168 h post-inoculation. Similar to the expression patterns of TaLr35PR1 at RNA levels, the accumulations of TaLr35PR1 protein were weak in the seedling stage and then increased to the peak and kept constant levels at the mature stage which is consistent with the expression feature of Lr35 gene as an adult plant resistance gene. All these findings suggest that TaLr35PR1 is involved in wheat growth and Lr35-mediated adult wheat defense response to leaf rust pathogen attack.  相似文献   

10.
In three separate experiments, the upper leaf surface of the fifth formed leaf of wheat cv. Highbury, the fourth and fifth leaves of barley cv. Julia and the third and fourth leaves of oat cv. Mostyn were inoculated in a spore settling tower with wheat brown rust (Puccinia recondita f. sp. tritici), barley brown rust (P. hordei) or oat crown rust (P. coronata f. sp. avenae), respectively. Fewer pustules developed on distal portions of leaves of plants infected with barley yellow dwarf virus (BYDV) than on similar portions of leaves from virus-free plants. There were no significant differences in the number of pustules on proximal leaf portions. In barley and oats, the number of pustules on distal leaf portions was negatively correlated with the amount of yellowing of the leaf areas scored. In wheat, symptoms of BYDV were mild and leaves were little affected by yellowing. The latent period of rust on wheat and oats was not affected by BYDV. In barley, BYDV reduced the latent period of rust on leaf 5, but not on leaf 4, and reduced it on proximal, but not distal, leaf portions. In other experiments, BYDV reduced the yield of wheat and oats by 44% and 66%, respectively, while BYDV-infected barley was almost sterile. The appropriate rust reduced the yield of wheat, barley and oats by 33%, 13% and 86%, respectively. When infected with both BYDV and rust, yield of wheat and oats was reduced by 63% and 91%, respectively. Neither BYDV nor rust affected the percentage crude protein content of wheat grain, nor did rust affect that of barley. In oats, BYDV and rust each significantly increased crude protein of grain, but rust infection of BYDV-infected plants tended to reduce it.  相似文献   

11.
Hippe-Sanwald  S.  Marticke  K. H.  Kieliszewski  M. J.  Somerville  S. C. 《Protoplasma》1994,178(3-4):138-155
Summary Immunoelectron microscopy was used to determine the subcellular distribution of threonine-hydroxyproline-rich glycoprotein (THRGP) epitopes in host-parasite interactions between obligate, biotrophic fungi and cereals. Infection sites of stem rust (Puccinia graminis f. sp.tritici) and leaf rust (Puccinia recondita) on primary leaves of wheat (Triticum aestivum), as well as of powdery mildew (Erysiphe graminis f. sp.hordei) on coleoptiles of barley (Hordeum vulgare), wete probed with a polyclonal antiserum to maize THRGP. A few immunogold particles were found over the cell walls of wheat mesophyll tissue and barley coleoptile epidermis. Unlike previous examples in dicot plants, no enhanced accumulation of THRGP was observed in cereal cell walls adjacent to sites of pathogen ingress. Instead, the most pronounced accumulation of THRGP-like molecules occurred over the extrahaustorial matrix in both incompatible and compatible plant-pathogen interactions. For powdery mildew of barley, immunogold staining was distinctly increased over the center of the penetration sites; however, no labeling was found over papillae that formed during incompatible and compatible interactions. In addition, no cross-reactivity of the anti-THRGP antiserum with intercellularly growing rust pathogens was observed. The highly localized deposition of THRGP-like molecules in the extrahaustorial matrix suggests that the host plant establishes a modified barrier between itself and the pathogen.Abbreviations C chloroplast - EC plant epidermal cell - EM extrahaustorial membrane - EMA extrahaustorial matrix - GO Golgi body - GRP glycine-rich protein - HP high pressure - HRGP hydroxyprolinerich glycoprotein - Hyp hydroxyproline - LT low temperature - PBS phosphate-buffered saline - PBST PBS with Tween-20 - THRGP threonine-hydroxyproline-rich glycoprotein - VA vesicular arbuscular  相似文献   

12.
An innovative application of X‐ray absorption near edge structure (XANES) spectroscopy for the characterization of interactions of biotrophic plant pathogens with their hosts as exemplified by Puccinia triticina colonizing wheat leaves is described. Spatially resolved, synchrotron radiation‐based XANES spectroscopy was used for the detection of changes in sulphur metabolism induced by leaf rust infections. A significant accumulation of sulphate occurred at the site of the sporulating urediniosori of P. triticina. Compared with non‐infected leaf areas, minor changes in the spectra were observed for the non‐visibly colonized tissue neighbouring the rust sori. As the spectra for isolated urediniospores and the healthy leaf areas did not match the spectra of the urediniosori, a significant impact of the biotrophic pathogen on sulphur metabolism of wheat has been demonstrated. Spatially resolved XANES spectroscopy will extend the range of qualitative and quantitative methods for in situ investigations of host–pathogen interactions, thus contributing to enlarge our knowledge about the metabolism of diseased plants.  相似文献   

13.
14.
Haustoria of Puccinia triticina (wheat leaf rust fungus) and P. hordei (barley leaf rust fungus) were isolated from susceptible and partially resistant wheat lines, and susceptible, hypersensitive and partially resistant barley lines. Haustoria were counted and measured. The size of haustoria was similar in the partially resistant and susceptible genotypes but haustoria were smaller in the hypersensitive barley line L94+Pa7. The number of haustoria was reduced in both partially and hypersensitive lines when compared with susceptible ones. Therefore it seems that the reduction in the number of haustoria is a consequence of the resistance that can be attributable either to early abortion of infection units or reduced colony growth. The reduction of the number of haustoria was more pronounced in the adult plant stage.  相似文献   

15.

Key message

The wheat eIF2 homolog, TaIF2, is induced by the stripe rust pathogen CYR 32 at an early stage of inoculation and is related to the innate immunity resistance level in wheat.

Abstract

The initiation of translation represents a critical control point in the regulation of gene expression in all organisms. We previously identified an upregulated EST S186 (EL773056) from an SSH-cDNA library of the Shaanmai 139 strain of wheat (Triticum aestivum) infected with Puccinia striiformis (Pst). In the present work, we isolated a cDNA clone and identified it as a wheat IF2 homolog. This cDNA consisted of 1,314 nucleotides and contained an open reading frame of 795 nucleotides encoding a polypeptide of 254 amino acids. The amino acids represent a conserved domain in EF-Tu, mtIF2-II, and mtIF2-Ivc. The alignment result showed that it maybe a partial cDNA of the initiation factor 2/eukaryotic initiation factor 5B (IF2/eIF5B) superfamily gene. Paradoxically, results of a Swiss-model analysis suggesting a low QMEAN Z-score implied that it was a membrane protein. Quantitative RT-PCR studies confirmed that the wheat eIF2 (TaIF2) homolog was differentially expressed in three near-isogenic lines. Critical time points for the induction of resistance by inoculation with Pst CYR32 in YrSM139-1B + YrSM139-2D immune resistance genotype occurred at 1 and 3 dpi (days post-infection). RNAi test showed that the inoculated BSMV-IF2 leaves of Shaanmai 139 showed obvious cell death after 15 days of inoculation with CYR 32. qRT-PCR analysis of the target gene in cDNA samples isolated from BSMV-IF2-Pst, BSMV-0-Pst and Pst infected leaves confirmed that the expression of TaIF2 is suppressed by BSMV-IF2 at 3 dpi. This suggested that TaIF2/eIF5B plays an important role in the mechanism of innate immunity to stripe rust pathogen.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号