首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A wheat cDNA encoding a glycine-rich RNA-binding protein, whGRP-1, was isolated. WhGRP-1 contains two conserved domains, the RNA-binding motif (RNP motif) combined with a series of glycine-rich imperfect repeats, characteristic of a conserved family of plant RNA-binding proteins. Northern analysis revealed that whGRP-1 mRNA accumulates to high levels in roots and to lower levels in leaves of wheat seedlings. whGRP-1 mRNA accumulation is not enhanced by exogenous abscisic acid in seedlings and accumulates to very high levels during wheat embryo development, showing a pattern different from that of the ABA-inducible wheat Em gene.  相似文献   

2.
The maize RNA-binding MA16 protein is a developmentally and environmentally regulated nucleolar protein that interacts with RNAs through complex association with several proteins. By using yeast two-hybrid screening, we identified a DEAD box RNA helicase protein from Zea mays that interacted with MA16, which we named Z. maysDEAD box RNA helicase 1 (ZmDRH1). The sequence of ZmDRH1 includes the eight RNA helicase motifs and two glycine-rich regions with arginine-glycine-rich (RGG) boxes at the amino (N)- and carboxy (C)-termini of the protein. Both MA16 and ZmDRH1 were located in the nucleus and nucleolus, and analysis of the sequence determinants for their cellular localization revealed that the region containing the RGG motifs in both proteins was necessary for nuclear/nucleolar localization The two domains of MA16, the RNA recognition motif (RRM) and the RGG, were tested for molecular interaction with ZmDRH1. MA16 specifically interacted with ZmDRH1 through the RRM domain. A number of plant proteins and vertebrate p68/p72 RNA helicases showed evolutionary proximity to ZmDRH1. In addition, like p68, ZmDRH1 was able to interact with fibrillarin. Our data suggest that MA16, fibrillarin, and ZmDRH1 may be part of a ribonucleoprotein complex involved in ribosomal RNA (rRNA) metabolism.  相似文献   

3.
The heterogeneous nuclear RNP (hnRNP) A1 protein is one of the major pre-mRNA/mRNA binding proteins in eukaryotic cells and one of the most abundant proteins in the nucleus. It is localized to the nucleoplasm and it also shuttles between the nucleus and the cytoplasm. The amino acid sequence of A1 contains two RNP motif RNA-binding domains (RBDs) at the amino terminus and a glycine-rich domain at the carboxyl terminus. This configuration, designated 2x RBD-Gly, is representative of perhaps the largest family of hnRNP proteins. Unlike most nuclear proteins characterized so far, A1 (and most 2x RBD-Gly proteins) does not contain a recognizable nuclear localization signal (NLS). We have found that a segment of ca. 40 amino acids near the carboxyl end of the protein (designated M9) is necessary and sufficient for nuclear localization; attaching this segment to the bacterial protein beta- galactosidase or to pyruvate kinase completely localized these otherwise cytoplasmic proteins to the nucleus. The RBDs and another RNA binding motif found in the glycine-rich domain, the RGG box, are not required for A1 nuclear localization. M9 is a novel type of nuclear localization domain as it does not contain sequences similar to classical basic-type NLS. Interestingly, sequences similar to M9 are found in other nuclear RNA-binding proteins including hnRNP A2.  相似文献   

4.
5.
The Rbp proteins in cyanobacteria are RNA-binding proteins with a single RNA recognition motif or RRM. A comprehensive assembly of genomic data suggests that there are two major classes of Rbp proteins (classes I and II) that diverged before the diversification of cyanobacteria. Class I proteins are further classified into two types with or without a C-terminal glycine-rich domain. The results of selection from a random RNA pool suggest that RbpA1 (class I) has affinity to C-rich and G-rich sequences. In vitro RNA binding assay with homopolymers indicated that class II protein has low affinity to poly(G) in contrast with class I proteins. Site-specific mutagenesis analysis of the RRM in RbpA1 showed that the aromatic residues Tyr4 or Phe46 are important in RNA binding as well as maintenance of secondary structure. We also tested various truncated proteins lacking the C-terminal domain as well as point mutants. Most of these proteins exhibited decreased affinity to RNA. Circular dichroism analysis as well as chromatographic analysis showed that Tyr4 and Phe46 are also important in maintaining the structure of RbpA1 protein. The C-terminal glycine-rich domain itself does not contribute much to the RNA-binding, but Arg83 which is located close to the C-terminal end of RRM is important in the RNA-binding.  相似文献   

6.
A perennial ryegrass cDNA clone encoding a putative glycine-rich RNA binding protein (LpGRP1) was isolated from a cDNA library constructed from crown tissues of cold-treated plants. The deduced polypeptide sequence consists of 107 amino acids with a single N-terminal RNA recognition motif (RRM) and a single C-terminal glycine-rich domain. The sequence showed extensive homology to glycine-rich RNA binding proteins previously identified in other plant species. LpGRP1-specific genomic DNA sequence was isolated by an inverse PCR amplification. A single intron which shows conserved locations in plant genes was detected between the sequence motifs encoding RNP-1 and RNP-2 consensus protein domains. A significant increase in the mRNA level of LpGRP1 was detected in root, crown and leaf tissues during the treatment of plants at 4°C, through which freezing tolerance is attained. The increase in the mRNA level was prominent at least 2 h after the commencement of the cold treatment, and persisted for at least 1 week. Changes in mRNA level induced by cold treatment were more obvious than those due to treatments with abscisic acid (ABA) and drought. The LpGRP1 protein was found to localise in the nucleus in onion epidermal cells, suggesting that it may be involved in pre-mRNA processing. The LpGRP1 gene locus was mapped to linkage group 2. Possible roles for the LpGRP1 protein in adaptation to cold environments are discussed.  相似文献   

7.
8.
Glycine-rich RNA-binding proteins (GR-RBPs) are involved in cold shock response of plants as RNA chaperones facilitating mRNA transport, splicing and translation. GR-RBPs are bipartite proteins containing a RNA recognition motif (RRM) followed by a glycine-rich region. Here, we studied the structural basis of nucleic acid binding of full-length Nicotiana tabacum GR-RBP1. NMR studies of NtGR-RBP1 show that the glycine-rich domain, while intrinsically disordered, is responsible for mediating self-association by transient interactions with its RRM domain (NtRRM). Both NtGR-RBP1 and NtRRM bind specifically and with low micromolar affinity to RNA and single-stranded DNA. The solution structure of NtRRM shows that it is a canonical RRM domain. A HADDOCK model of the NtRRM–RNA complex, based on NMR chemical shift and NOE data, shows that nucleic acid binding results from a combination of stacking and electrostatic interactions with conserved RRM residues. Finally, DNA melting experiments demonstrate that NtGR-RBP1 is more efficient in melting CTG containing nucleic acids than isolated NtRRM. Together, our study supports the model that self-association of GR-RBPs by the glycine-rich region results in cooperative unfolding of non-native substrate structures, thereby enhancing its chaperone function.  相似文献   

9.
The Guanine-rich RNA sequence binding factor 1 (GRSF1) is a member of the heterogeneous nuclear ribonucleoprotein F/H family and has been implicated in RNA processing, RNA transport and translational regulation. Amino acid alignments and homology modeling suggested the existence of three distinct RNA-binding domains and two auxiliary domains. Unfortunately, little is known about the molecular details of GRSF1/RNA interactions. To explore the RNA-binding mechanisms we first expressed full-length human GRSF1 and several truncation mutants, which include the three separated qRRM domains in E. coli, purified the recombinant proteins and quantified their RNA-binding affinity by RNA electrophoretic mobility shift assays. The expression levels varied between 1 and 10 mg purified protein per L bacterial liquid culture and for full-length human GRSF1 a binding constant (KD-value) of 0.5 μM was determined. In addition, our mechanistic experiments with different truncation mutants allowed the following conclusions: i) Deletion of either of the three RNA-binding domains impaired the RNA-binding affinity suggesting that the simultaneous presence of the three domains is essential for high-affinity RNA-binding. ii) Deletion of the Ala-rich auxiliary domain did hardly affect RNA-binding. Thus, this structural subunit may not be involved in RNA interaction. iii) Deletion of the acidic auxiliary domain improved the RNA-binding suggesting a regulatory role for this structural motif. iv) The isolated RNA-binding domains did not exhibit sizeable RNA-binding affinities. Taken together these data suggest that a cooperative interaction of the three qRRMs is required for high affinity RNA-binding.  相似文献   

10.
The recognition of single-stranded RNA (ssRNA) is an important aspect of gene regulation, and a number of different classes of protein domains that recognize ssRNA in a sequence-specific manner have been identified. Recently, we demonstrated that the RanBP2-type zinc finger (ZnF) domains from the human splicing factor ZnF Ran binding domain-containing protein 2 (ZRANB2) can bind to a sequence containing the consensus AGGUAA. Six other human proteins, namely, Ewing's sarcoma (EWS), translocated in liposarcoma (TLS)/FUS, RNA-binding protein 56 (RBP56), RNA-binding motif 5 (RBM5), RNA-binding motif 10 (RBM10) and testis-expressed sequence 13A (TEX13A), each contains a single ZnF with homology to the ZRANB2 ZnFs, and several of these proteins have been implicated in the regulation of mRNA processing. Here, we show that all of these ZnFs are able to bind with micromolar affinities to ssRNA containing a GGU motif. NMR titration data reveal that binding is mediated by the corresponding surfaces on each ZnF, and we also show that sequence selectivity is largely limited to the GGU core motif and that substitution of the three flanking adenines that were selected in our original selection experiment has a minimal effect on binding affinity. These data establish a subset of RanBP2-type ZnFs as a new family of ssRNA-binding motifs.  相似文献   

11.
The rbp gene family of the cyanobacterium Anabaena variabilis strain M3 consists of eight members that encode small RNA-binding proteins containing a single RNA recognition motif (RRM). Similar genes are found in the genomes of Synechocystis sp. PCC6803, Helicobacter pylori and Treponema pallidum, but are absent from the other completely sequenced prokaryotic genomes. The expression of the rbp genes of Anabaena is induced by low temperature, with the exception of the rbpD gene. We found four stretches of conserved sequences in the 5'-untranslated region of the cyanobacterial rbp genes that are known to be induced by low temperature. The cold-regulated Rbp proteins contain a short C-terminal glycine-rich domain. In this respect, these proteins are similar to plant and mammalian glycine-rich RNA-binding proteins (GRPs), which also contain a single RRM domain with a C-terminal glycine-rich domain and are highly expressed at low temperature. Detailed phylogenetic analysis showed, however, that the cyanobacterial Rbp proteins and the eukaryotic GRPs do not belong to a single lineage, but that the glycine-rich domains are likely to have been added independently. The cold-regulation of both types of proteins is also likely to have evolved independently. Furthermore, the chloroplast RNA-binding proteins are not likely to have originated from the Rbp proteins of endosymbiont cyanobacterium, but are supposed to have diverged from the GRPs. These results suggest that the cyanobacterial Rbp proteins and the eukaryotic GRPs are similar in both structure and regulation, but that this apparent similarity has resulted from convergent evolution.  相似文献   

12.
RNA-binding proteins play crucial roles in various cellular functions and contain abundant disordered protein regions. The disordered regions in RNA-binding proteins are rich in repetitive sequences, such as poly-K/R, poly-N/Q, poly-A, and poly-G residues. Our bioinformatic analysis identified a largely neglected repetitive sequence family we define as electronegative clusters (ENCs) that contain acidic residues and/or phosphorylation sites. The abundance and length of ENCs exceed other known repetitive sequences. Despite their abundance, the functions of ENCs in RNA-binding proteins are still elusive. To investigate the impacts of ENCs on protein stability, RNA-binding affinity, and specificity, we selected one RNA-binding protein, the ribosomal biogenesis factor 15 (Nop15), as a model. We found that the Nop15 ENC increases protein stability and inhibits nonspecific RNA binding, but minimally interferes with specific RNA binding. To investigate the effect of ENCs on sequence specificity of RNA binding, we grafted an ENC to another RNA-binding protein, Ser/Arg-rich splicing factor 3. Using RNA Bind-n-Seq, we found that the engineered ENC inhibits disparate RNA motifs differently, instead of weakening all RNA motifs to the same extent. The motif site directly involved in electrostatic interaction is more susceptible to the ENC inhibition. These results suggest that one of functions of ENCs is to regulate RNA binding via electrostatic interaction. This is consistent with our finding that ENCs are also overrepresented in DNA-binding proteins, whereas underrepresented in halophiles, in which nonspecific nucleic acid binding is inhibited by high concentrations of salts.  相似文献   

13.
The Pseudomonas syringae type III effector HopU1 is a mono-ADP-ribosyltransferase that is injected into plant cells by the type III protein secretion system. Inside the plant cell it suppresses immunity by modifying RNA-binding proteins including the glycine-rich RNA-binding protein GRP7. The crystal structure of HopU1 at 2.7-Å resolution reveals two unique protruding loops, L1 and L4, not found in other mono-ADP-ribosyltransferases. Site-directed mutagenesis demonstrates that these loops are essential for substrate recognition and enzymatic activity. HopU1 ADP-ribosylates the conserved arginine 49 of GRP7, and this reduces the ability of GRP7 to bind RNA in vitro. In vivo, expression of GRP7 with Arg-49 replaced with lysine does not complement the reduced immune responses of the Arabidopsis thaliana grp7-1 mutant demonstrating the importance of this residue for GRP7 function. These data provide mechanistic details how HopU1 recognizes this novel type of substrate and highlights the role of GRP7 in plant immunity.  相似文献   

14.
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are thought to influence the structure of hnRNA and participate in the processing of hnRNA to mRNA. The hnRNP U protein is an abundant nucleoplasmic phosphoprotein that is the largest of the major hnRNP proteins (120 kDa by SDS-PAGE). HnRNP U binds pre-mRNA in vivo and binds both RNA and ssDNA in vitro. Here we describe the cloning and sequencing of a cDNA encoding the hnRNP U protein, the determination of its amino acid sequence and the delineation of a region in this protein that confers RNA binding. The predicted amino acid sequence of hnRNP U contains 806 amino acids (88,939 Daltons), and shows no extensive homology to any known proteins. The N-terminus is rich in acidic residues and the C-terminus is glycine-rich. In addition, a glutamine-rich stretch, a putative NTP binding site and a putative nuclear localization signal are present. It could not be defined from the sequence what segment of the protein confers its RNA binding activity. We identified an RNA binding activity within the C-terminal glycine-rich 112 amino acids. This region, designated U protein glycine-rich RNA binding region (U-gly), can by itself bind RNA. Furthermore, fusion of U-gly to a heterologous bacterial protein (maltose binding protein) converts this fusion protein into an RNA binding protein. A 26 amino acid peptide within U-gly is necessary for the RNA binding activity of the U protein. Interestingly, this peptide contains a cluster of RGG repeats with characteristic spacing and this motif is found also in several other RNA binding proteins. We have termed this region the RGG box and propose that it is an RNA binding motif and a predictor of RNA binding activity.  相似文献   

15.
Hfq, a bacterial RNA-binding protein, was recently shown to contain the Sm1 motif, a characteristic of Sm and LSm proteins that function in RNA processing events in archaea and eukaryotes. In this report, comparative structural modeling was used to predict a three-dimensional structure of the Hfq core sequence. The predicted structure aligns with most major features of the Methanobacterium thermoautotrophicum LSm protein structure. Conserved residues in Hfq are positioned at the same structural locations responsible for subunit assembly and RNA interaction in Sm proteins. A highly conserved portion of Hfq assumes a structural fold similar to the Sm2 motif of Sm proteins. The evolution of the Hfq protein was explored by conducting a BLAST search of microbial genomes followed by phylogenetic analysis. Approximately half of the 140 complete or nearly complete genomes examined contain at least one gene coding for Hfq. The presence or absence of Hfq closely followed major bacterial clades. It is absent from high-level clades and present in the ancient Thermotogales-Aquificales clade and all proteobacteria except for those that have undergone major reduction in genome size. Residues at three positions in Hfq form signatures for the beta/gamma proteobacteria, alpha proteobacteria and low GC Gram-positive bacteria groups.  相似文献   

16.
Neural RNA recognition motif (RRM)-type RNA-binding proteins play essential roles in neural development. To search for a new member of neural RRM-type RNA-binding protein, we screened rat cerebral expression library with polyclonal antibody against consensus RRM sequences. We have cloned and characterized a rat cDNA that belongs to RRM-type RNA-binding protein family, which we designate as drb1. Orthologs of drb1 exist in human and mouse. The predicted amino acid sequence reveals an open reading frame of 476 residues with a corresponding molecular mass of 53kDa and consists of four RNA-binding domains. drb1 gene is specifically expressed in fetal (E12, E16) rat brain and gradually reduced during development. In situ hybridization demonstrated neuron-specific signals in fetal rat brain. RNA-binding assay indicated that human Drb1 protein possesses binding preference on poly(C)RNA. These results indicate that Drb1 is a new member of neural RNA-binding proteins, which expresses under spatiotemporal control.  相似文献   

17.
PUF proteins are a conserved group of sequence specific RNA-binding proteins that bind to RNA in a modular fashion. The RNA-binding domain of PUF proteins typically consists of eight clustered Puf repeats. Plant genomes code for large families of PUF proteins that show significant variability in their predicted Puf repeat number, organization, and amino acid sequence. Here we sought to determine whether the observed variability in the RNA-binding domains of four plant PUFs results in a preference for nonclassical PUF RNA target sequences. We report the identification of a novel RNA binding sequence for a nucleolar Arabidopsis PUF protein that contains an atypical RNA-binding domain. The Arabidopsis PUM23 (APUM23) binding sequence was 10 nucleotides in length, contained a centrally located UUGA core element, and had a preferred cytosine at nucleotide position 8. These RNA sequence characteristics differ from those of other PUF proteins, because all natural PUFs studied to date bind to RNAs that contain a conserved UGU sequence at their 5′ end and lack specificity for cytosine. Gel mobility shift assays validated the identity of the APUM23 binding sequence and supported the location of 3 of the 10 predicted Puf repeats in APUM23, including the cytosine-binding repeat. The preferred 10-nucleotide sequence bound by APUM23 is present within the 18S rRNA sequence, supporting the known role of APUM23 in 18S rRNA maturation. This work also reveals that APUM23, an ortholog of yeast Nop9, could provide an advanced structural backbone for Puf repeat engineering and target-specific regulation of cellular RNAs.  相似文献   

18.
19.
Tomato bushy stunt virus (TBSV), a tombusvirus with a nonsegmented, plus-stranded RNA genome, codes for two essential replicase proteins. The sequence of one of the replicase proteins, namely p33, overlaps with the N-terminal domain of p92, which contains the signature motifs of RNA-dependent RNA polymerases (RdRps) in its nonoverlapping C-terminal portion. In this work, we demonstrate that both replicase proteins bind to RNA in vitro based on gel mobility shift and surface plasmon resonance measurements. We also show evidence that the binding of p33 to single-stranded RNA (ssRNA) is stronger than binding to double-stranded RNA (dsRNA), ssDNA, or dsDNA in vitro. Competition experiments with ssRNA revealed that p33 binds to a TBSV-derived sequence with higher affinity than to other nonviral ssRNA sequences. Additional studies revealed that p33 could bind to RNA in a cooperative manner. Using deletion derivatives of the Escherichia coli-expressed recombinant proteins in gel mobility shift and Northwestern assays, we demonstrate that p33 and the overlapping domain of p92, based on its sequence identity with p33, contain an arginine- and proline-rich RNA-binding motif (termed RPR, which has the sequence RPRRRP). This motif is highly conserved among tombusviruses and related carmoviruses, and it is similar to the arginine-rich motif present in the Tat trans-activator protein of human immunodeficiency virus type 1. We also find that the nonoverlapping C-terminal domain of p92 contains additional RNA-binding regions. Interestingly, the location of one of the RNA-binding domains in p92 is similar to the RNA-binding domain of the NS5B RdRp protein of hepatitis C virus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号