首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pilot-scale membrane bioreactor (MBR) and a conventional activated sludge system (CAS) were in parallel operated to investigate the impact of the separation technology on the structure and functionality of the selected microbial community. Microbial communities as well as nitrogen removal efficiency of the biomass were characterized. Kinetics and microbial community structure turned out to be duly correlated. The impact of the separation technology on selective conditions and, in particular, the higher variability of solid separation efficiency in CAS with respect to MBR pilot plant possibly represented the main factor influencing the selection of bacterial communities. Concerning nitrifiers, bacteria of the genus Nitrospira were predominant in the MBR. This was in accordance with kinetics of nitrite-oxidizing bacteria that suggested the presence of k-strategists, while r-strategists were selected in the CAS plant, possibly because of the presence of transient higher concentrations of nitrite (in the range of 0.05–0.18 and of 0.05–4.4 mg  $ {\text{NO}}_{2}^{ - } $ -N L?1 in the MBR and CAS effluents, respectively). An unexpectedly high presence of bacteria belonging to two specific phylogenetic clades of Planctomycetes was found in both reactors.  相似文献   

2.
Activated Sludge Model no. 1 (ASM1) was modified and applied to Simultaneous Nitrification and Denitrification (SND) in oxygen-limited MBR. In order to calibrate the model correctly, the parametric sensitivity was performed using AQUASIM 2.0 to find the most important coefficients. The most sensitive coefficients in the model of oxygen-limited MBR were related to the growth of heterotrophic biomass. While the total autotrophic biomass concentration (XBA) was decreased by decreasing DO concentration, there was an increase in the nitrite-oxidizing biomass concentration by a small amount. This model also showed that over 97% of permeate Soluble Chemical Oxygen Demand (SCOD) was the Soluble Inert (SI). The model showed the change in the ammonia-oxidizing and nitrite-oxidizing biomass was decreased by decreasing DO concentration. However, there was an increase in the nitrite-oxidizing biomass concentration by a small amount due to the biomass retained in the bioreactor with membrane. It is contradictory to the reported observations for conventional activated sludge process.  相似文献   

3.
The anaerobic biodegradation of Linear Alkylbenzene Sulfonate (LAS) was studied in Upflow Anaerobic Sludge Blanket Reactors (UASB). One reactor was fed with easily degradable substrates and commercial LAS solution during a period of 3 months (Reactor 1), meanwhile a second reactor was fed with a commercial LAS solution without co-substrate (Reactor 2) during 4 months. Both reactors were operated with an organic loading rate of 4–5 mg-LAS/l*day and a hydraulic retention time of one day.The LAS biodegradation was determined by full mass balance. LAS was analysed by HPLC in the liquid phase (influent and effluent streams of the reactors) as well as in the solid phase (granular sludge used as biomass). The results indicate a high level of removal (primary biodegradation: 64–85%). Biodegradation was higher in the absence of external co-substrates than in the presence of additional sources of carbon. This indicates that the surfactant can be partially used as carbon and energy source by anaerobic bacteria. Under the operating conditions used, inhibition of the methanogenic activity or any other negative effects on the biomass due to the presence of LAS were not observed. The methanogenic activity remained high and stable throughout the experiment.  相似文献   

4.
Biodegradation, kinetics, and microbial diversity of aerobic granules were investigated under a high range of organic loading rate 6.0 to 12.0 kg chemical oxygen demand (COD) m−3 day−1 in a sequencing batch reactor. The selection and enriching of different bacterial species under different organic loading rates had an important effect on the characteristics and performance of the mature aerobic granules and caused the difference on granular biodegradation and kinetic behaviors. Good granular characteristics and performance were presented at steady state under various organic loading rates. Larger and denser aerobic granules were developed and stabilized at relatively higher organic loading rates with decreased bioactivity in terms of specific oxygen utilization rate and specific growth rate (μ overall) or solid retention time. The decrease of bioactivity was helpful to maintain granule stability under high organic loading rates and improve reactor operation. The corresponding biokinetic coefficients of endogenous decay rate (k d), observed yield (Y obs), and theoretical yield (Y) were measured and calculated in this study. As the increase of organic loading rate, a decreased net sludge production (Y obs) is associated with an increased solid retention time, while k d and Y changed insignificantly and can be regarded as constants under different organic loading rates.  相似文献   

5.
The biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) byPseudomonas cepacia was assessed by microcalorimetry in a liquid medium and in sterilized soil at 25°C under aerobic conditions. It was found that thermograms of the rate of heat evolved versus time (dQ/dt versust) can be used as a diagnostic tool to identify the timet 1 required for the primary biodegradation of 2,4-D and the timet f required for the completion of the biodegradation activity in a liquid medium as well as in soil. Microcalorimetry can also be used as an analytical tool to monitor the progress of 2,4-D consumption during the biodegradation process in a liquid medium and to measure the importance of the soil sorption/desorption of intermediate metabolites. A new concept called bioeffort was defined as the product of the biodegradation time (t) and the biomass concentration (X) at that time. This concept was used to predict either the biomass concentration required or the duration of the primary biodegradation of 2,4-D in soil from the data obtained from a liquid medium.  相似文献   

6.
Aerobic and anaerobic biodegradation of six priority PCBs was investigated in continuous stirred tank reactors fed with naturally contaminated sewage sludge. Anaerobic and aerobic abiotic losses were higher for the lightly chlorinated PCBs but remained for all PCBs below 20%. Under strict methanogenic conditions, PCB removals were about 40% whatever PCB molecular weight or their degree of chlorination. However, considering abiotic losses, the heaviest PCBs were more efficiently anaerobically biodegraded probably because of higher dechlorination rates. The aerating sludge process enhanced removal of the lightest chlorinated PCBs from 40% up to 100%, while removal rates of the heaviest PCBs remained around 40%. Although the mesophilic aerobic process exhibits better removal efficiencies because of operating conditions, the results suggest that PCB biodegradation was strongly limited by their bioavailability in naturally contaminated sludge, under both redox conditions. Indeed, since PCB removal was closely linked to the solid reduction rates, PCB bioavailability was likely the limiting factor for biodegradation. As a consequence, the raw PCB concentrations (in mg kg–1dry weight) which are concerned by legislative procedures did not decrease sufficiently in both processes to reach a limit value fulfilling the current French/European regulation about PCB contents in sewage sludge before spreading on agricultural land.  相似文献   

7.
Pure oxygen to supply the aerobic condition was used in the performance of a bench-scale submerged membrane bioreactor (MBR). The pilot plant was located in the wastewater treatment plant of the city of Granada (Spain) and the experimental work was divided into two stages (Unsteady state and steady state conditions). Operation parameters (MLSS, MLVSS and dissolved oxygen concentration) and physical characteristics (temperature, conductivity, pH, COD and BOD5) were daily monitored. The results showed the capacity of the MBR systems to remove organic material under a hydraulic retention time of 18.46 h and sludge retention time of 18.6 days. Therefore, Viscosity of the sludge and αkLa-factor of the aeration, were determinate in the steady stage condition to understand the behavior of the system when pure oxygen has been used to supply the aerobic conditions of the MBR system showed an alpha-factor of 0.238 when the viscosity of the system was 4.04 Cp.  相似文献   

8.
The formation of anaerobic granular sludge on wastewater from sugar-beet processing was examined in upflow anaerobic sludge blanket reactors. Two strategies were investigated: addition of high-energy substrate, i.e. sugars, and varying the reactor liquid surface tension. When there were insufficient amounts of sugars i.e. less than 7% of the chemical O2 demand of the influent, no granulation was observed; moreover lowering the reactor liquid surface tension below 48 mN/m was found to increase biomass wash-out. On the other hand, when there were sufficient sugars, granular sludge growth occurred; moreover operating the reactor at a low reactor liquid surface tension reduced biomass wash-out and increased granular yield.  相似文献   

9.
《Process Biochemistry》2010,45(11):1826-1831
The aim of this work consists in evaluating the influence of carmabazepine (CBZ) (i) on the endogenous and exogenous respirations, in batch reactors, of bacterial populations taken from a conventional activated sludge process (CAS) and a pilot-scale membrane bioreactor (MBR) and (ii) on COD removal, sludge production and oxygen requirement of a lab-sale MBR system. In batch experiments, the increase in endogenous oxygen needs suggests an increase in maintenance requirements, essentially to manage the chemical stress induced by the CBZ presence. The decrease of exogenous oxygen needs seems to suggest a change in the metabolic pathways of the substrate or a change in the active bacterial species. However, in spite of these momentary changes, no inhibition is observed in the presence of CBZ in the test tank. This result is confirmed by the MBR experiment where no significant difference COD removal, sludge production and oxygen requirement is observed, with and without CBZ.  相似文献   

10.
The liquid superficial up_ow velocity (Vup) and hydraulic retention time (HRT) on the thermophilic treatment of oleate in expanded granular sludge bed (EGSB) reactors were investigated. The highest methane conversion rate of oleate, 93 mg CH4-COD/g VSS.d, was attained in a reactor operating at a Vup of 1 m/h and an HRT of 24 h. The typical EGSB reactor hydrodynamics (Vup > 4 m/h and HRT < 10 h) inhibited the treatment performance, mainly due to biomass washout in particulate form. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

11.
The microbial community structures of a conventional activated sludge and MBR systems treating the municipal wastewater were studied using Fluorescent in-situ Hybridization (FISH) analysis to identify differences in both systems. The oligonucleotide probes specific for overall bacteria, including α-, β-, and γ-subclasses of Proteobacteria, ammonia-oxidizing bacteria (Nitrosomonas), and nitrite-oxidizing bacteria (Nitrobacter) were used to compare the microbial community structure of both systems. A trend of less hybridization with bacteria-specific probe EUB338 was observed in MBR systems operated under aerobic condition, compared to conventional activated sludge system. The less hybridization trend with the probes could be associated with low ribosomal RNA (rRNA) content in the biomass, which suggests that the biomass in the MBR system was not in a physiological state characteristic for growth due to low substrate per unit biomass  相似文献   

12.
A static electrolytic respirometer was adapted to work under dynamic conditions using an internal airflow recirculation system that passed air through sludge/straw solid mixtures. Airflow reduced oxygen transfer limitations and increased the maximum respiration rate and kLa values, indicating that the observed value may have been close to the actual biodegradation rate. Airflow caused sludge drying, so the sample moisture was controlled by air humidification. To apply the optimised respirometric technique, a pilotscale composting process was developed. Some commonly used respiration indices (RI24, AT4) were used to measure the final compost stability. RI24 indices without airflow were underestimated during the thermophilic composting stage. Once the easily biodegradable carbon was consumed, the static and dynamic RI24 indices were nearly identical. Because of the dynamic procedure, the respiration rate was likely controlled by the biochemical reaction and not by the mass transfer. The respiration indices indicated that the final compost was unstable.  相似文献   

13.
The activated sludge membrane bioreactor (MBR) has been shown to have some advantages for the processing and reclamation of domestic wastewater. We hypothesized that certain microorganisms, chosen for their abilities to decompose the chemical components of raw sewage, would, when coupled with the MBR, significantly improve the stability and efficiency of this system. We selected environmental bacterial strains which oxidize ammonia and nitrites and produce protease, amylase, and cellulase for the development and testing of a novel biologically enhanced MBR (eMBR). We compared the eMBR with the activated sludge MBR. With the eMBR, the average values of effluent quality were: chemical oxygen demand (COD), 40 mg/l(average efficiency of removal 90.0%); and NH4 +–N, 0.66 mg/l(average efficiency of removal 99.4%). Effluent qualities met the standard and were stable during the entire 90 days of this study. For the activated sludge MBR, the COD removal rate was 91.7%, and the NH4 +–N removal (94.8%) was less than that of the eMBR. Start-up time for the eMBR was only 24–48 h, much shorter than the 7–8 days required to initiate function of the standard MBR. The biomass concentrations of total heterotrophic bacteria and autotrophic bacteria in the eMBR did not fluctuate significantly during the course of the study. Various kinds of microorganisms will establish an ecological balance in the reactor. Compared with the activated sludge MBR, the eMBR not only produced an excellent and stable quality of effluent but also resulted in a shorter time to start-up and significantly improved the efficiency of NH4 +–N removal.  相似文献   

14.
In this study, effluent sludge from a high-rate Anammox reactor was used to re-start new Anammox reactors for the reactivation of Anammox granular sludge. Different start-up strategies were evaluated in six upflow anaerobic sludge blanket (UASB) reactors (R1–R6) for their effect on nitrogen removal performance. Maximal nitrogen removal rates (NRRs) greater than 20 kg N/m3/day were obtained in reactors R3–R5, which were seeded with mixed Anammox sludge previously stored for approximately 6 months and 1 month. A modified Boltzmann model describing the evolution of the NRR fit the experimental data well. An amount of sludge added to the UASB reactor or decreasing the loading rate proved effective in relieving the substrate inhibition and increasing the NRR. The modified Stover–Kincannon model fit the nitrogen removal data in the Anammox reactors well, and the simulation results showed that the Anammox process has great nitrogen removal potential. The observed inhibition in the Anammox reactors may have been caused by high levels of free ammonia. The sludge used to seed the reactors did not settle well; sludge flotation was observed even after the reactors were operated for a long time at a floating upward velocity (Fs) of greater than 100 m/h. The settling sludge, however, exhibited good settling properties. Scanning electron microscopy showed that the Anammox granules consisted mainly of spherical and elliptical bacteria with abundant filaments on their surface. Hollows in the granules were also present, which may have contributed to sludge floatation.  相似文献   

15.
Using batch cultures, we determined transformation rate coefficients for microbial transformation of 2,4-dichlorophenoxyacetic acid butoxyethyl ester (2,4-DBE) in periphyton-dominated ecosystems. Rates of 2,4-DBE loss were measured over short periods of time (usually less than 10 h), and first-order transformation rate coefficients (k1) were determined under the specific conditions of low 2,4-DBE concentrations and no growth. Values for k1 were divided by total plate counts and by biomass measured as ash-free dry weight to give second-order rate coefficients (kb and kAFDW, respectively) for use in predictive models. Using periphyton attached to Teflon strips, we also determined second-order rate coefficients based on the ratio of colonized surface area to container volume (kA). Mean second-order rate coefficients were used to predict 2,4-DBE transformation rates in microcosms having diverse chemical and biological environments. The observed transformation rates among the microcosms were most accurately predicted by using kA.  相似文献   

16.
A photo-Fenton-membrane bioreactor (MBR) coupled system is an innovative tool for the treatment of wastewater containing high quantities of contaminants. In this paper, wastewater with 200 mg l?1 of dissolved organic carbon (DOC) of a selected mixture of five commercial pesticides: Vydate®, Metomur®, Couraze®, Ditimur-40®, and Scala® was treated by combining photo-Fenton and MBR. The effect of photo-treated pollutants on MBR operation was investigated by studying the population changes that occurred with time in the activated sludge of the biological system. Pre-treatment with photo-Fenton was carried out (only up to 34% of mineralization of DOC) and, after MBR treatment, 98% of biodegradation efficiency was obtained. During the biological treatment, little changes in the activated sludge population were detected by DGGE analysis, maintaining acceptable biodegradation efficiency, which points out the robustness of the MBR treatment versus changes in feed composition.  相似文献   

17.
The effects of phenol, 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 1,2,4-trichlorobenzene (1,2,4-TCB) on the biodegradation kinetics of the conventional activated sludge system (CASS) and the selector activated sludge system (SASS) were investigated. Experiments were carried out using a respirometric method on unacclimated biomass from two lab-scale systems that were operated with the sludge age of 8 days. Toxicity of the test compounds for both reactors were arranged according to EC50 (effective concentration) values in order as: 1,2,4-TCB > 2,4-DCP > 2-CP > phenol. All selected test compounds induced higher inhibition effect in the CASS. The SASS appeared to reduce inhibition effect in comparison to the CASS, by 21.36%, 66.95%, 64.37% and 33.33% for phenol, 2-CP, 2,4-DCP and 1,2,4-TCB, respectively. Consequently, the SASS may be recommended as a promising configuration alternative for the waste streams containing toxic compounds.  相似文献   

18.
Removal of chlorophenols in sequential anaerobic-aerobic reactors   总被引:5,自引:0,他引:5  
Combination of upflow anaerobic sludge blanket (UASB) and aerobic rotating biological contactor (RBC) reactors having higher biomass concentration and higher sludge retention time (SRT) was applied for the sequential treatment of priority pollutant chlorophenol containing wastewater. Target compounds 2-chlorophenol (2-CP) and 2,4-dichlorophenol (2,4-DCP) present in two simulated wastewaters at a concentration of 30 mg/l each individually were sequentially treated in continuous mode by combined UASB-I, RBC-I and combined UASB-II, RBC-II reactors, respectively after the acclimation of their biomass with the corresponding chlorophenol. Reactor combinations took 190 and 215 days for acclimation with 30 mg/l of 2-CP and 2,4-DCP respectively. Hydraulic retention time (HRT) studies showed that 12h HRT of UASB-I and 23 h HRT of RBC-I as well as 12h HRT of UASB-II and 28.8h HRT of RBC-II were the optimum combinations for the treatment of simulated wastewater containing 2-CP and 2,4-DCP respectively. Optimum HRT combinations produced 2-CP and 2,4-DCP effluent having corresponding chlorophenol concentration of below detectable limit (BDL) and 0.1 mg/l respectively. Half velocity coefficients (Ks) for 2-CP and 2,4-DCP biodegradation in UASB reactors were determined to be 5.07 mg 2-CP/l and 6.49 mg 2,4-DCP/l. Optimum ratio of substrate (chlorophenol): co-substrate (sodium acetate) was 1:100.  相似文献   

19.
Much attention has been devoted recently to the fate of pharmaceutically active compounds such as tetracycline antibiotics in soil and water. Tetracycline (TC) biodegradability by activated sludge derived from membrane bioreactor (MBR) treating swine wastewater via CO2-evolution was evaluated by means of modified Sturm test, which was also used to evaluate its toxicity on carbon degradation. The impact of tetracycline on a semi-industrial MBR process was also examined and confronted to lab-scale experiments. After tetracycline injection in the pilot, no disturbance was detected on the elimination of organic matters and ammonium (nitrification), reaching after injection 88% and 99% respectively; only denitrification was slightly affected. Confirming the ruggedness and the superiority of membrane bioreactors over conventional bioreactors, no toxicity was observed at the considered level of TC in the pilot (20 mg TOC L−1), while at lab-scale sodium benzoate biodegradation was completely inhibited from 10 mg TOC L−1 TC. The origin of the activated sludge showed a significant impact on the performances, since the ultimate biodegradation was in the range −50% to −53% for TC concentrations in the range 10–20 mg TOC L−1 with conventional bioreactor sludge and increased to 18% for 40 mg TOC L−1 of TC with activated sludge derived from the MBR pilot. This confirmed the higher resistance of activated sludge arising from membrane bioreactor.  相似文献   

20.
Nitrification performance of a chemostat and a membrane-assisted bioreactor (MBR) was assessed at pilot scale for the treatment of sludge reject waters with NH4+-N concentrations up to 600 mg/L and low organic content (COD<200 mg/L). To prevent nitrifier washout the 1-m3 chemostat was operated at 20°C with minimum hydraulic retention time of F=2 days. At the 0.71 m3 MBR, F was successively reduced to 6.2 h. Complete sludge retention was achieved by means of a 2-m2 100,000-Dalton PES ultrafiltration membrane. Operation in crossflow mode with flow velocities from vF=2.4-3.7 m/s and transmembrane pressures (p=0.5-1.2 bar yielded a long-term permeate flux of 110 L/(m22h). In the MBR, nitrification rates up to 2,500 g N/(m32d) were measured with biomass concentrations between 4 and 15 g TSS/L. Despite low TSS values, about 0.2 g/L of the chemostat was able to nitrify 180 g N/(m32d). The microbial community composition differed considerably between the two reactors as determined by fluorescent in situ hybridisation (FISH) with rRNA-targeted oligonucleotide probes. For both reactors, the relative abundance of ammonia and nitrite oxidisers measured by FISH was consistent with results from dynamic simulation of the nitrification process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号