首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study focuses on the biodegradation of difluorobenzenes (DFBs), compounds commonly used as intermediates in the industrial synthesis of various pharmaceutical and agricultural chemicals. A previously isolated microbial strain (strain F11), identified as Labrys portucalensis, able to degrade fluorobenzene (FB) as sole carbon and energy source, was tested for its capability to degrade 1,2-, 1,3- and 1,4-DFB in batch cultures. Strain F11 could use 1,3-DFB as a sole carbon and energy source, with quantitative release of fluoride, but 1,4-DFB was only degraded and defluorinated when FB was supplied simultaneously. Growth of strain F11 with 0.5 mM of 1,3-DFB led to stoichiometric release of fluoride ion. The same result was obtained in cultures fed with 1 mM of 1,3-DFB or 0.5 mM of 1,4-DFB, in the presence of 1 mM of FB. No growth occurred with 1,2-DFB as substrate, and degradation of FB was inhibited when supplied simultaneously with 1,2-DFB. To our knowledge, this is the first time biodegradation of 1,3-DFB as a sole carbon and energy source, and cometabolic degradation of 1,4-DFB, by a single bacterium, is reported.  相似文献   

2.
Aniline and halogenated anilines are known as widespread environmental toxic pollutants released into soil and water. In contrast to aniline, which is rapidly metabolized via catechol, halosubstituted anilines are more resistant to microbial attack. A fluorobenzene-degrading bacterium, Labrys portucalensis strain F11, was tested under different culture conditions for the degradation potential towards 2-, 3- and 4-fluoroaniline (2-, 3- and 4-FA). Strain F11 was able to use FAs as a source of carbon and nitrogen however, supplementation with a nitrogen source improved substrate consumption and its dehalogenation extent. When F11 cells were previously grown on fluorobenzene (FB), higher biodegradation rates were achieved for all isomers. Complete 2-FA biodegradation with stoichiometric fluoride release was achieved when FB-induced cells were used. On the other hand, the degradation of 3- and 4-FA was characterized by incomplete defluorination of the target compounds suggesting accumulation of fluorinated intermediates. F11 cultures simultaneously supplied with FB and the fluorinated anilines showed a concomitant degradation of both substrates, suggesting co-metabolic biodegradation. To our knowledge, this is the first time that biodegradation of 2- and 3-FA as a sole carbon and nitrogen source and co-metabolic degradation of FA isomers in the presence of a structural analogous compound is reported.  相似文献   

3.
Fluoroquinolone (FQ) antibiotics are extensively used both in human and veterinary medicine, and their accumulation in the environment is causing an increasing concern. In this study, the biodegradation of the three most worldwide used FQs, namely ofloxacin, norfloxacin, and ciprofloxacin, by the fluoroorganic-degrading strain Labrys portucalensis F11 was assessed. Degradation occurred when the FQs were supplied individually or as mixture in the culture medium, in the presence of an easily degradable carbon source. Consumption of individual FQs was achieved at different extents depending on its initial concentration, ranging from 0.8 to 30 μM. For the lowest concentration, total uptake of each FQ was observed but stoichiometric fluoride release was not achieved. Intermediate compounds were detected and identified by LC-MS/MS with a quadrupole time of flight detector analyzer. Biotransformation of FQs by L. portucalensis mainly occurred through a cleavage of the piperazine ring and displacement of the fluorine substituent allowing the formation of intermediates with less antibacterial potency. FQ-degrading microorganisms could be useful for application in bioaugmentation processes towards more efficient removal of contaminants in wastewater treatment plants.  相似文献   

4.
Interactions of micronutrients can affect absorption and bioavailability of other nutrients by a number of mechanisms. In aqueous solutions, and at higher uptake levels, competition between elements with similar chemical characteristics and uptake process can take place. The consequences of these interactions may depend on the relative concentrations of the nutrients. In this work, we measure the effects of increasing concentrations of iron, zinc, and copper on iron and copper uptake in Caco-2 cells. Intracellular Fe or Cu levels were affected by incubating with increased concentrations of metals. However, when the cells already had different intracellular metal concentration, the uptake of Fe or Cu was nor affected. In competition studies, we showed that Cu and Zn inhibited Fe uptake, and while Fe inhibited Cu uptake, Zn did not. When the three metals were given together (1:1:1 ratio), Fe or Cu uptake was inhibited approximately 40%. These results point to a potential risk in the absorption and bioavailability of these minerals by the presence of other minerals in the diet. This aspect must be considered in food supplementation and fortification programs.  相似文献   

5.
6.
Effect of iron on the biodegradation of petroleum in seawater.   总被引:5,自引:1,他引:4       下载免费PDF全文
The biodegradation of South Louisiana (SL) crude oil and the effects of nitrogen, phosphorus, and iron supplements on this process were compared in a polluted (10,900 oil degraders per liter) and in a relatively clean (750 oil degraders per liter) littoral seawater sample taken along the New Jersey coast. Without supplements, the biodegradation of SL crude oil was negligible in both seawater samples. Addition of nitrogen and phosphorus allowed very rapid biodegradation (72% in 3 days) in polluted seawater. Total iron in this seawater sample was high (5.2 muM), and the addition of iron did not increase the biodegradation rate further. In the less polluted and less iron-rich (1.2 muM) seawater sample, biodegradation of SL crude oil was considerably slower (21% in 3 days) and the addition of chelated iron had a stimulating effect. Ferric octoate was shown to have a similar stimulating effect on SL crude oil biodegradation as chelated iron. Ferric octoate, in combination with paraffinized urea and octylphosphate, is suitable for treatment of floating oil slicks. We conclude that spills of SL crude and similar oils can be cleaned up rapidly and efficiently by stimulated biodegradation, provided the water temperatures are favorable.  相似文献   

7.
Neurodegenerative diseases constitute a worldwide health problem. Metals like iron and copper are essential for life, but they are also involved in several neurodegenerative mechanisms such as protein aggregation, free radical generation and oxidative stress. The role of Fe and Cu, their pathogenic mechanisms and possible therapeutic relevance are discussed regarding four of the most common neurodegenerative diseases, Alzheimer's, Parkinson's and Huntington's diseases as well as amyotrophic lateral sclerosis. Metal-mediated oxidation by Fenton chemistry is a common feature for all those disorders and takes part of a self-amplifying damaging mechanism, leading to neurodegeneration. The interaction between metals and proteins in the nervous system seems to be a crucial factor for the development or absence of neurodegeneration. The present review also deals with the therapeutic strategies tested, mainly using metal chelating drugs. Metal accumulation within the nervous system observed in those diseases could be the result of compensatory mechanisms to improve metal availability for physiological processes.  相似文献   

8.
9.
The intrinsic physical properties of the noble metal nanoparticles,which are highly sensitive to the nature of their local molecular environment,make such systems ideal for the detection of molecular recognition events.The current review describes the state of the art concerning molecular recognition of Noble metal nanoparticles.In the first part the preparation of such nanoparticles is discussed along with methods of capping and stabilization.A brief discussion of the three common methods of functionalization:Electrostatic adsorption;Chemisorption;Affinity-based coordination is given.In the second section a discussion of the optical and electrical properties of nanoparticles is given to aid the reader in understanding the use of such properties in molecular recognition.In the main section the various types of capping agents for molecular recognition;nucleic acid coatings,protein coatings and molecules from the family of supramolecular chemistry are described along with their numerous applications.Emphasis for the nucleic acids is on complementary oligonucleotide and aptamer recognition.For the proteins the recognition properties of antibodies form the core of the section.With respect to the supramolecular systems the cyclodextrins,calix[n]arenes,dendrimers,crown ethers and the cucurbitales are treated in depth.Finally a short section deals with the possible toxicity of the nanoparticles,a concern in public health.  相似文献   

10.
The interaction between dietary copper and zinc as determined by tissue concentrations of trace elements was investigated in male Sprague-Dawley rats. Animals were fed diets in a factorial design with two levels of copper (0.5, 5 μg/g) and five levels of zinc (1, 4.5, 10, 100, 1000 μg/g) for 42 d. In rats fed the low copper diet, as dietary zinc concentration increased, the level of copper decreased in brain, testis, spleen, heart, liver, and intestine. There was no significant effect of dietary copper on tissue zinc levels. In the zinc-deficient groups, the level of iron was higher in most tissues than in tissues from controls (5 μg Cu, 100 μg Zn/g diet). In the copper-deficient groups, iron concentration was higher than control values only in the liver. These data show that dietary zinc affected tissue copper levels primarily when dietary copper was deficient, that dietary copper had no effect on tissue zinc, and that both zinc deficiency and copper deficiency affected tissue iron levels.  相似文献   

11.
The effect of long-term dietary cadmium treatment upon the distribution of the metals copper, iron and zinc has been compared in various organs of male and female rats. The renal accumulation of cadmium was similar in both sexes without a plateau being reached. In contrast, the hepatic accumulation of cadmium was higher in the female than in the male rat and a plateau was observed after 30–35 weeks of dietary cadmium treatment. Most of the cadmium which accumulated in these organs was recovered in the metallothionein fraction and the concentration of hepatic cadmiumthionein in the female rat was correspondingly higher than in the male rat. Accumulation of cadmium was associated with an increased zinc concentration in the liver and an increased copper concentration in the kidney; these increases were correlated with increases in liver and kidney metallothioneins induced by cadmium. Uptake of cadmium into organs other than liver and kidney occurred to a small extent but was not associated with changes in the concentration of copper and zinc. Cadmium also accumulated in the intestinal mucosa where it could be recovered in a fraction corresponding to metallothionein. A loss of iron from the liver and kidney was also observed following dietary cadmium treatment and involved mainly a loss of iron from ferritin.  相似文献   

12.
Dietary chitosans with different molecular weight Mw and the degree of deacetylation DDA (high molecular weight chitosan HCS with Mw 7.60 × 105 and DDA 85.5%, middle molecular weight chitosan MCS with Mw 3.27 × 104 and DDA 85.2%, chito-oligomer COS with Mw 0.99 × 103 and DDA 85.7% and water-soluble chitosan WSC with Mw 3.91 × 104 and DDA 52.6%) were used at the 1.05% level to feed mice for 90 days. Afterwards no pathological symptoms, clinical signs or deaths were observed. The body weight of mice in chitosan group and control group showed no significant difference. Although HCS, COS and WSC had no significant effect on the level of Fe, Zn and Cu in the tested mice’s liver, spleen, heart and kidney, MCS significantly increased the level of Fe, Zn and Cu in liver. Therefore dietary ingestion of chitosan did not depress the level of Fe, Zn and Cu in mice.  相似文献   

13.
Chronic administration of chlorpromazine produced alterations in trace metal concentrations in caudate nucleus, frontal cortex, and cerebellar hemisphere of guinea pigs. Manganese concentration following chronic chlorpromazine rose significantly in the caudate nucleus and cerebellar hemisphere whereas iron concentration rose most significantly in the caudate nucleus. Copper content was decreased in all regions examined. The possible significance of increased manganese and iron in the caudate nucleus is discussed in relationship to the clinical problems of chlorpromazine-induced dyskinesias.  相似文献   

14.
An up-flow fixed bed reactor (UFBR) was established to investigate the biodegradation of fluorobenzene (FB) under a number of operating conditions, which included variation in the concentration of FB in the feed stream (up to 180 mg l−1) and temporary suspension of feeding. Degradation of FB was followed for a period of 8 months under a continuous flow regime. During the operation of the UFBR, FB was never detected in the reactor effluent, being biodegraded by the microbial biofilm or adsorbed to the granular activated carbon (GAC). Biodegradation of FB was observed from the beginning of the reactor operation, and overall, it accounted for 50% of the total amount fed to the bioreactor. High organic loads of FB (210–260 mg d−1 dm−3) were found to affect the biological removal efficiency, possibly due to an inhibitory effect caused by the higher FB concentrations fed to the bioreactor (149–179 mg l−1). When FB feeding was suspended for 1 month, biodegradation continued, indicating that the adsorbed FB became bioavailable. Biofilm bacterial dynamics were followed throughout the UFBR operation by denaturing gradient gel electrophoresis and plate-counting techniques, showing that a quite stable community was found in the bioreactor, and this was mainly attributed to the high selective pressure exerted by the presence of FB.  相似文献   

15.
Puberty associated with intense physical activity results in oxidation stress. Zinc supplementation may benefit antioxidant capacity although it may also affect iron and copper status. This study evaluated the effect of zinc supplementation on antioxidant, zinc and copper status of physically active male football players (13 years ± 0.4 years), divided in two groups and studied during 12 weeks: Zn‐supplemented (Zn‐SUP, 22 mg Zn d?1 as zinc gluconate, n = 21) and placebo (PLA, n = 26). At baseline, there was no significant difference in biochemical indices between the two groups. After treatment, plasma zinc and erythrocyte iron increased in both groups (p < 0.001); urinary zinc increased (p < 0.001) only in Zn‐SUP, and erythrocyte zinc decreased (p = 0.002) only in PLA. Plasma iron and copper decreased (p = 0.01 and p = 0.015, respectively) only in Zn‐SUP. Plasma ferric‐reducing ability and plasma conjugated dienes increased, and erythrocyte osmotic fragility decrease in both groups, although the latter two were significantly lower in Zn‐SUP compared to PLA (p < 0.01). In conclusion, our study indicates that the use of 22 mg d?1 of supplemental zinc during 12 week in adolescent athletes did not affect growth, improved markers of antioxidant status but reduced plasma iron and copper. Therefore, it appears that the use of zinc supplementation by healthy adolescent athletes benefits their antioxidant capacity but impairs copper and iron nutritional status. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
铜离子对混合菌群降解三氯乙烯的影响与机制分析   总被引:1,自引:0,他引:1  
在三氯乙烯(TCE)胁迫条件下,从生活垃圾填埋场覆盖土中富集得到了可高效降解TCE的混合菌群SWA1。考察了铜离子浓度0-15μmol/L范围内混合菌群对TCE的降解,当铜离子浓度为0.03μmol/L时,降解速率最大为29.60 nmol/min,降解率达95.75%。此条件下的pmo A和mmo X表达量均达最大值,pmo A的相对表达量(4.22 E-03)比mmo X(9.30 E-06)和Lmp H(0)高3个数量级。在0-0.75μmol/L和1-15μmol/L两个铜离子浓度区间,分别出现了TCE降解峰值,高通量测序结果表明,甲基孢囊菌科Methylocystaceae的甲烷氧化菌为优势微生物。随着铜离子浓度提高,混合菌群SWA1生物多样性显著降低。铜离子浓度的变化影响了混合菌群的结构和活性,进而影响了TCE降解机制。当铜离子浓度为0.03μmol/L时,降解机制包括TCE直接降解和甲烷氧化菌共代谢降解。当铜离子浓度为5μmol/L时,降解率可达到84.75%。此时,降解机制包括TCE直接降解以及甲烷氧化菌和含苯酚羟化酶菌群的共代谢降解。  相似文献   

17.
Stoyanov JV  Magnani D  Solioz M 《FEBS letters》2003,546(2-3):391-394
Copper, silver, gold and other heavy metals are potentially toxic to cells. Copper is also essential and cellular levels must be carefully controlled. In contrast, there is no known biological role for silver or gold and they have not been recognized as metals that are under homeostatic control. Using a luminescent biosensor based of the Vibrio fischeri lux gene cluster under the control of the Escherichia coli copA promoter/CueR metal-responsive regulator, we could show that in E. coli, cytoplasmic copper and silver, but not gold, are regulated by the CopA ATPase, the major copper efflux pump.  相似文献   

18.
Summary A greenhouse experiment was conducted to study the effect of phosphorus and zinc application, in three lowland alluvial rice soils (Haplustalf) on the growth of rice and the concentration of phosphorus, zinc, copper, iron and manganese in shoots and roots. The results showed that application of phosphorus and zinc significantly increased the dry matter yield of shoots, grains and roots. Application of phosphorus caused a decrease in the concentration of zinc, copper, iron and manganese both in shoots and roots. Application of zinc also similarly lowered the concentration of phosphorus, copper and iron, but increased that of manganese in shoots and roots. The decrease in the concentration of the elements in the shoots was not due to dilution effect or to the reduced rate of translocation of the elements from the roots to tops. This has been attributed more to the changes in the availability of the elements in soil resulting from the application of phosphorus and zinc.  相似文献   

19.
The chelating agents, EDDHA, its iron salt, EDTA, and salicylic acid enhance bud formation in Bartramidula bartramioides (Griff.) Wijk & Marg. Salicylic acid elicits optimal response at 10–4 M , whereas the other substances do so at 10–7 M . Increased concentration of ferric citrate and cupric sulphate also stimulate bud induction. The accumulation of Fe3+ and Cu2+ is facilitated by chelators. The endogenous iron content is maximum at 10–7 M EDDHA or EDTA, which is also the concentration optimal for bud induction.  相似文献   

20.
The present study was designed to investigate the effect of mercuric chloride administration on copper, zinc, and iron concentrations in the liver, kidney, lung, heart, spleen, and muscle of rats. The results showed that after dose and time exposure to mercuric chloride, the concentration of mercury in the six tissues was significantly elevated. Data showed that there were no interaction between mercury and tissue iron. There was a considerable elevation of the content of copper in the kidney and liver. The most significant changes in the copper concentration took place in the kidneys. About a twofold increase in the copper content of the kidney was noted after exposure to mercuric chloride (3 mg and 5 mg/kg). Only slight elevations in the copper content occurred in the liver, especially in high dose and longer exposure time. In the remaining organs, the copper content was not changed significantly (p>0.05). The most significant changes in the zinc concentration took place in liver, kidney, lung, and heart (5 mg/kg). Marked changes in kidney zinc concentrations were observed at any of the specified doses. Zinc concentrations were significantly increased in kidney of rats sacrificed 9–48 h after sc injection of HgCl2 (5 mg/kg); in liver obtained from rats at 18, 24, or 48 h after injection; and in lung after 24 or 48 h of treatment. The heart and spleen zinc concentrations were elevated at 24 and 48 h after injection of HgCl2 (5 mg/kg), respectively. The results of this study implicate that effects on copper and zinc concentrations of the target tissues of mercury may play an important role in the pathogenesis of acute mercuric chloride intoxication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号