首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
MSI-99 is a synthetic analog of magainin II (MII), a small cationic peptide highly inhibitory to a wide spectrum of microbial organisms. Tomato plants were transformed to express a gene encoding the MSI-99 peptide and tested for possible enhancement of resistance to important pathogens of this crop. Thirty-six tomato transformants carrying an MSI-99 expression vector designed to target the peptide into extracellular spaces were obtained by Agrobacterium tumefaciens-mediated transformation. Expression of MSI-99 caused no obvious cytotoxic effects in these plants. In the tests with Pseudomonas syringae pv. tomato (bacterial speck pathogen) at 105 CFU/ml, several MSI-99-expressing lines developed significantly fewer disease symptoms than controls. However, MSI-99-expressing lines were not significantly different from controls in their responses to the fungal pathogen Alternaria solani (early blight) and the oomycete pathogen Phytophthora infestans (late blight). These findings are in accordance with our previous in vitro inhibition tests, which showed that the MSI-99 peptide is more inhibitory against bacteria than against fungi and oomycetes. Additional in vitro inhibition assays showed that MSI-99 loses its antimicrobial activity in the total or extracellular fluids from leaflets of non-transformed tomato plants; however, P. syringae pv. tomato could not multiply in the extracellular fluid from an MSI-99-expressing line. Our results suggest that expression strategies providing continuous high expression of MSI-99 will be necessary to achieve significant enhancement of plant disease resistance.Abbreviations AMP Antimicrobial peptide - CFU Colony forming unit - ECF Extracellular fluid - gus -glucuronidase gene - nptII Neomycin phosphotransferase II - SP Signal peptide - TF Total fluidCommunicated by S. Gleddie  相似文献   

2.
Multiple infections of Sweet potato feathery mottle virus (SPFMV), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato virus G (SPVG) and Sweet potato mild mottle virus (SPMMV) cause a devastating synergistic disease complex of sweet potato (Ipomoea batatas Lam.) in KwaZulu-Natal, South Africa. In order to address the problem of multiple virus infections and synergism, this study aimed to develop transgenic sweet potato (cv. Blesbok) plants with broad virus resistance. Coat protein gene segments of SPFMV, SPCSV, SPVG and SPMMV were used to induce gene silencing in transgenic sweet potato. Transformation of apical tips of sweet potato cv. Blesbok was achieved by using Agrobacterium tumefaciens strain LBA4404 harboring the expression cassette. Polymerase chain reaction and Southern blot analyses showed integration of the transgenes occurred in six of the 24 putative transgenic plants and that all plants seemed to correspond to the same transformation event. The six transgenic plants were challenged by graft inoculation with SPFMV, SPCSV, SPVG and SPMMV-infected Ipomoea setosa Ker. Although virus presence was detected using nitrocellulose enzyme-linked immunosorbent assay, all transgenic plants displayed delayed and milder symptoms of chlorosis and mottling of lower leaves when compared to the untransformed control plants. These results warrant further investigation on resistance to virus infection under field conditions.  相似文献   

3.
4.
5.
6.
In this report sweet potato cysteine protease SPCP3 cDNAs, with or without the corresponding granulin-like domain, were overexpressed in transgenic Arabidopsis plants. Transgenic Arabidopsis plants with ectopic expression of full-length SPCP3 exhibited slight promotion of earlier floral transition from vegetative to reproductive growth and a higher percentage of yellowing siliques per plant. Transgenic progeny seeds showed similar patterns of germination rates and germination curves but lower germination percentages compared to those of wild-type control seeds. During drought treatment, photochemical F v/F m values and relative water content of transgenic plants were significantly reduced compared to those of wild-type controls. Transgenic Arabidopsis plants with ectopic expression of sweet potato SPCP3 with or without the corresponding C-terminal granulin-like domain exhibited similar drought-stress sensitivity patterns. Drought stress also enhanced SPCP3 gene expression, photochemical F v/F m reduction, and wilting in sweet potato detached leaves. Based on these data, we conclude that sweet potato granulin-containing cysteine protease SPCP3 is a functional gene, and its ectopic expression alters phenotypic traits and enhances drought-stress sensitivity in transgenic Arabidopsis plants. The presence of the C-terminal granulin-like domain has no significant influence on SPCP3-mediated drought-stress sensitivity in transgenic Arabidopsis plants.  相似文献   

7.
8.
9.
10.
Tomato (Solanum lycopersicum L.) is the second most important cultivated crop next to potato, worldwide. Tomato serves as an important source of antioxidants in human diet. Alternaria solani and Fusarium oxysporum cause early blight and vascular wilt of tomato, respectively, resulting in severe crop losses. The foremost objective of the present study was to generate transgenic tomato plants with rolB gene and evaluate its effect on plant morphology, nutritional contents, yield and resistance against fungal infection. Tomato cv. Rio Grande was transformed via Agrobacterium tumefaciens harbouring rolB gene of Agrobacterium rhizogenes. rolB. Biochemical analyses showed considerable improvement in nutritional quality of transgenic tomato fruits as indicated by 62% increase in lycopene content, 225% in ascorbic acid content, 58% in total phenolics and 26% in free radical scavenging activity. Furthermore, rolB gene significantly improved the defence response of leaves of transgenic plants against two pathogenic fungal strains A. solani and F. oxysporum. Contrarily, transformed plants exhibited altered morphology and reduced fruit yield. In conclusion, rolB gene from A. rhizogenes can be used to generate transgenic tomato with increased nutritional contents of fruits as well as improved foliar tolerance against fungal pathogens.  相似文献   

11.
Information on the extent of transgene dispersal by pollen to adjacent potato plots and to related weed species is an important requisite for risk assessment; a procedure followed before novel transgenic plants are evaluated under field conditions. The purpose of the investigation was to determine the frequency of cross-pollination between potato (Solanum tuberosum) plants at different distances, using a kanamycin resistnace transgene (nptII) as a selectable marker. All potato plants were from the variety Désirée. Non-transgenic potato plants, used as potential recipients of transgene-containing pollen, were planted in 12 sub-plots, at distances of 0–20 m from the nearest transgenic potato plants. Seeds harvested from the non-transgenic plants were screened for resistance to kanamycin, and molecular methods were used to confirm that resistant progeny contained thenptII gene. Where transgenic and non-transgenic potato plants were in alternate rows (leaves touching), 24% of seedlings from the non-transgenic parent plants were kanamycin-resistant. Comparable seedlings from plants at up to 3 m distance had a resistance frequency of 2%, at 10 m the frequency was 0.017% and at 20 m no resistant progeny were observed. Plants of the weed speciesS. dulcamara andS. nigrum were also planted close to the transgenic potatoes to test for evidence of hybridization, and no kanamycin-resistant seedlings were observed among progeny fromS. dulcamara andS. nigrum. This investigation provided evidence that the extent of gene dispersal from transgenic potatoes to non-transgenic potatoes falls markedly with increasing distance, and is negligible at 10 m. There was, also, no evidence of transgene movement from potato toS. dulcamara andS. nigrum under field conditions. These data will be valuable in defining genetic isolation procedures for the early field evaluation and the use of novel transgenic potato genotypes.  相似文献   

12.
The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.  相似文献   

13.
14.
15.
16.
GA biosynthesis and catabolism has been shown to play an important role in regulating tuberization in potato. Active GAs are inactivated in the stolon tips shortly after induction to tuberization. Overexpression of a GA inactivation gene results in an earlier tuberization phenotype, while reducing expression of the same gene results in delayed tuberization. In addition, overexpression of genes involved in GA biosynthesis results in delayed tuberization, while decreased expression of those genes results in earlied tuberization. The final step in GA biosynthesis is catalysed by StGA3ox1 and StGA3ox2 activity, that convert inactive forms of GA into active GA1 and GA4. In this study we cloned StGA3ox2 gene in an RNAi construct and used this construct to transform potato plants. The StGA3ox2 silenced plants were smaller and had shorter internodes. In addition, we assayed the concentrations of various GAs in the transgenic plants and showed an altered GA content. No difference was observed on the time point of tuber initiation. However, the transgenic clones had increased number of tubers with the same yield, resulting in smaller average tuber weight. In addition, we cloned the promoter of StGA3ox2 to direct expression of the GUS reporter gene to visualize the sites of GA biosynthesis in the potato plant. Finally, we discuss how changes of several GA levels can have an impact on shoot, stolon and tuber development, as well as the possible mechanisms that mediate feed-forward and feed-back regulation loops in the GA biosynthetic pathway in potato.  相似文献   

17.
Transgenic potato plants with the nptII gene coding for neomycin phosphotransferase (kanamycin resistance) as a selection marker were examined for the spread of recombinant DNA into the environment. We used the recombinant fusion of nptII with the tg4 terminator for a novel biomonitoring technique. This depended on natural transformation of Acinetobacter sp. strain BD413 cells having in their genomes a terminally truncated nptII gene (nptII′; kanamycin sensitivity) followed by the tg4 terminator. Integration of the recombinant fusion DNA by homologous recombination in nptII′ and tg4 restored nptII, leading to kanamycin-resistant transformants. DNA of the transgenic potato was detectable with high sensitivity, while no transformants were obtained with the DNA of other transgenic plants harboring nptII in different genetic contexts. The recombinant DNA was frequently found in rhizosphere extracts of transgenic potato plants from field plots. In a series of field plot and greenhouse experiments we identified two sources of this DNA: spread by roots during plant growth and by pollen during flowering. Both sources also contributed to the spread of the transgene into the rhizospheres of nontransgenic plants in the vicinity. The longest persistence of transforming DNA in field soil was observed with soil from a potato field in 1997 sampled in the following year in April and then stored moist at 4°C in the dark for 4 years prior to extract preparation and transformation. In this study natural transformation is used as a reliable laboratory technique to detect recombinant DNA but is not used for monitoring horizontal gene transfer in the environment.  相似文献   

18.
The role of Δ12-acyl-lipid desaturase in plant resistance to hypothermia-induced oxidative stress was investigated. This study focused on modulation of free-radical processes occurring at low temperature in leaf cells of potato plants (Solanum tuberosum L., cv. Desnitsa) transformed with the gene for Δ12-acyl-lipid desaturase from the cyanobacterium Synechocystis sp. PCC 6803. Nontransformed plants of the same cultivar were used as a control material. The plants were grown in vitro on Murashige and Skoog agarized medium containing 2% sucrose. During hypothermia the rate of superoxide anion generation and hydrogen peroxide concentration decreased significantly. In addition, the content of both primary products (conjugated dienes and trienes) and secondary products (malonic dialdehyde) of lipid peroxidation was lower in the transformed plant leaves than in leaves of wild-type plants. It is supposed that the insertion into the plant genome of Δ12-acyl-lipid desaturase stabilizes the composition and physical properties of biomembranes by promoting polyunsaturation of fatty acids, which averts the accelerated generation of O 2 ·? , — and suppresses lipid peroxidation during hypothermia. These changes improved cold resistance of potato plants, which was evident from the less severe injury of leaf blades in cold-treated transgenic plants, as compared to that in the wild-type line. The activity of superoxide dismutase, a key enzyme of the antioxidant defense system was lower in leaves of transformed plants than in leaves of wild-type plants. A comparatively low activity of superoxide dismutase in transgenic plants implies that these plants experience less severe thermal and oxidative stress upon cooling and can cope with the cold without considerable increase in the enzyme activity. It is concluded that the insertion of the desA gene encoding Δ12-acyl-lipid desaturase into cold-resistant potato plants improves plant resistance to cold-induced oxidative stress by decreasing the rate of intracellular free-radical processes.  相似文献   

19.
The method of polymerase chain reaction was used to amplify a fragment of the LZ-NBS-LRR receptor kinase gene R1; the gene was transferred into potato (Solanum tuberosum) from its wild-growing relative S. demissum and confers the race-specific recognition of the pathogen Phytophthora infestans. To verify this method as a test for the presence of the late blight resistance gene R1, the amplified genome fragment was cloned from the potato hybrid comprising the germplasm of S. demissum. The primary structure of this fragment, which corresponded to the receptor domain of kinase, did not practically differ from the matching sequence in S. demissum. In addition, the method was verified by scoring the set of plant differentials, wherein the presence of R1 was established with race-specific Phytophthora isolates. By screening 70 potato cultivars, we established a significant relationship between the presence of the gene R1 fragment and the phenotypic characters of late blight resistance and late maturity. This evidence supports the idea that R1 was introgressed from short-day S. demissum into potato plants together with some gene(s) conferring late transition to flowering.  相似文献   

20.
Christolea crassifolia HARDY: gene (CcHRD) belongs to the AP2/ERF-like tanscritpion factor family, and overexpression of HRD gene has been proved to result in improved water use efficiency and enhanced drought resistance in multiple plant species. In the present study, we cloned the CcHRD gene from Christolea crassifolia, which shares 99.1% sequence similarity with the HRD gene from Arabidopsis thaliana. We generated transgenic tomato plants expressing CcHRD gene by agrobacterium-mediated genetic transformation. Our results revealed that the transgenic tomato plants showed a more developed root system and higher fruit yield than the wild-type plants. Furthermore, the leaf relative water content, chlorophyll content and Fv/Fm value in transgenic plants were significantly higher than the wild type, while the relative conductivity and MDA content of transgenic plant leaves were markedly lower than those of wild type under drought stress. We also observed that the major agronomic traits of transgenic tomato plants were improved under natural drought stress compared with those of the wild type. In summary, results in this transgenic study showed that the CcHRD gene could enhance the drought resistance in tomato, and also provided important information for the application of drought-responsive genes in improving crop plant resistance to abiotic stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号