首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The murine allele temperature-sensitive (ts) p53Val-135 encodes a ts p53 protein that behaves as a mutant polypeptide at 37 degrees C and as a wild-type polypeptide at 32 degrees C. This ts allele was introduced into the p53 nonproducer Friend erythroleukemia cell line DP16-1. The DP16-1 cell line was derived from the spleen cells of a mouse infected with the polycythemia strain of Friend virus, and like other erythroleukemia cell lines transformed by this virus, it grows independently of erythropoietin, likely because of expression of the viral gp55 protein which binds to and activates the erythropoietin receptor. When incubated at 32 degrees C, DP16-1 cells expressing ts p53Val-135 protein, arrested in the G0/G1 phase of the cell cycle, rapidly lost viability and expressed hemoglobin, a marker of erythroid differentiation. Erythropoietin had a striking effect on p53Val-135-expressing cells at 32 degrees C by prolonging their survival and diminishing the extent of hemoglobin production. This response to erythropoietin was not accompanied by down-regulation of viral gp55 protein.  相似文献   

2.
Murine erythroleukemia cells that lack endogenous p53 expression were transfected with a temperature-sensitive p53 allele. The temperature-sensitive p53 protein behaves as a mutant polypeptide at 37 degrees C and as a wild-type polypeptide at 32 degrees C. Three independent clones expressing the temperature-sensitive p53 protein were characterized with respect to p53-mediated G1 cell cycle arrest, apoptosis, and differentiation. Clone ts5.203 responded to p53 activation at 32 degrees C by undergoing G1 arrest, apoptosis, and differentiation. Apoptosis was seen in cells representative of all phases of the cell cycle and was not restricted to cells arrested in G1. The addition of a cytokine (erythropoietin, c-kit ligand, or interleukin-3) to the culture medium of ts5.203 cells blocked p53-mediated apoptosis and differentiation but not p53-mediated G1 arrest. These observations indicate that apoptosis and G1 arrest can be effectively uncoupled through the action of cytokines acting as survival factors and are consistent with the idea that apoptosis and G1 arrest represent separate functions of p53. Clones ts15.15 and tsCB3.4 responded to p53 activation at 32 degrees C by undergoing G1 arrest but not apoptosis. We demonstrate that tsCB3.4 secretes a factor with erythropoietin-like activity and that ts15.15 secretes a factor with interleukin-3 activity and suggest that autocrine secretion of these cytokines blocks p53-mediated apoptosis. These data provide a framework in which to understand the variable responses of cells to p53 overexpression.  相似文献   

3.
4.
A temperature-sensitive mutant of p53, p53Val-135, was found to be able to arrest cell proliferation when overexpressed at 32.5 degrees C. While much of the protein was cytoplasmic in cells proliferating at 37.5 degrees C, it became predominantly nuclear at 32.5 degrees C. Concomitantly, p53Val-135 became destabilized, although not to the extent seen in primary fibroblasts.  相似文献   

5.
A temperature-sensitive mutant of murine p53 (p53Val-135) was transfected by electroporation into murine erythroleukemia cells (DP16-1) lacking endogenous expression of p53. While the transfected cells grew normally in the presence of mutant p53 (37.5 degrees C), wild-type p53 (32.5 degrees C) was associated with a rapid loss of cell viability. Genomic DNA extracted at 32.5 degrees C was seen to be fragmented into a characteristic ladder consistent with cell death due to apoptosis. Following synchronization by density arrest, transfected cells released into G1 at 32.5 degrees C were found to lose viability more rapidly than did randomly growing cultures. Following release into G1, cells became irreversibly committed to cell death after 4 h at 32.5 degrees C. Commitment to cell death correlated with the first appearance of fragmented DNA. Synchronized cells allowed to pass out of G1 prior to being placed at 32.5 degrees C continued to cycle until subsequently arrested in G1; loss of viability occurred following G1 arrest. In contrast to cells in G1, cells cultured at 32.5 degrees C for prolonged periods during S phase and G2/M, and then returned to 37.5 degrees C, did not become committed to cell death. G1 arrest at 37.5 degrees C, utilizing either mimosine or isoleucine deprivation, does not lead to rapid cell death. Upon transfer to 32.5 degrees C, these G1 synchronized cell populations quickly lost viability. Cells that were kept density arrested at 32.5 degrees C (G0) lost viability at a much slower rate than did cells released into G1. Taken together, these results indicate that wild-type p53 induces cell death in murine erythroleukemia cells and that this effect occurs predominantly in the G1 phase of actively cycling cells.  相似文献   

6.
7.
The effect of ERK, p38, and JNK signaling on p53-dependent apoptosis and cell cycle arrest was investigated using a Friend murine erythroleukemia virus (FVP)-transformed cell line that expresses a temperature-sensitive p53 allele, DP16.1/p53ts. In response to p53 activation at 32 degrees C, DP16.1/p53ts cells undergo p53-dependent G(1) cell cycle arrest and apoptosis. As a result of viral transformation, these cells express the spleen focus forming env-related glycoprotein gp55, which can bind to the erythropoietin receptor (EPO-R) and mimics many aspects of EPO-induced EPO-R signaling. We demonstrate that ERK, p38 and JNK mitogen-activated protein kinases (MAPKs) are constitutively active in DP16.1/p53ts cells. Constitutive MEK activity contributes to p53-dependent apoptosis and phosphorylation of p53 on serine residue 15. The pro-apoptotic effect of this MAPK kinase signal likely reflects an aberrant Ras proliferative signal arising from FVP-induced viral transformation. Inhibition of MEK alters the p53-dependent cellular response of DP16.1/p53ts from apoptosis to G(1) cell cycle arrest, with a concomitant increase in p21(WAF1), suggesting that the Ras/MEK pathway may influence the cellular response to p53 activation. p38 and JNK activity in DP16.1/p53ts cells is anti-apoptotic and capable of limiting p53-dependent apoptosis at 32 degrees C. Moreover, JNK facilitates p53 protein turnover, which could account for the enhanced apoptotic effects of inhibiting this MAPK pathway in DP16.1/p53ts cells. Overall, these data show that intrinsic MAPK signaling pathways, active in transformed cells, can both positively and negatively influence p53-dependent apoptosis, and illustrate their potential to affect cancer therapies aimed at reconstituting or activating p53 function.  相似文献   

8.
Bcl-2 blocks p53-dependent apoptosis.   总被引:36,自引:5,他引:31       下载免费PDF全文
Adenovirus E1A expression recruits primary rodent cells into proliferation but fails to transform them because of the induction of programmed cell death (apoptosis). The adenovirus E1B 19,000-molecular-weight protein (19K protein), the E1B 55K protein, and the human Bcl-2 protein each cause high-frequency transformation when coexpressed with E1A by inhibiting apoptosis. Thus, transformation of primary rodent cells by E1A requires deregulation of cell growth to be coupled to suppression of apoptosis. The product of the p53 tumor suppressor gene induces apoptosis in transformed cells and is required for induction of apoptosis by E1A. The ability of Bcl-2 to suppress apoptosis induced by E1A suggested that Bcl-2 may function by inhibition of p53. Rodent cells transformed with E1A plus the p53(Val-135) temperature-sensitive mutant are transformed at the restrictive temperature and undergo rapid and complete apoptosis at the permissive temperature when p53 adopts the wild-type conformation. Human Bcl-2 expression completely prevented p53-mediated apoptosis at the permissive temperature and caused cells to remain in a predominantly growth-arrested state. Growth arrest was leaky, occurred at multiple points in the cell cycle, and was reversible. Bcl-2 did not affect the ability of p53 to localize to the nucleus, nor were the levels of the p53 protein altered. Thus, Bcl-2 diverts the activity of p53 from induction of apoptosis to induction of growth arrest, and it is thereby identified as a modifier of p53 function. The ability of Bcl-2 to bypass induction of apoptosis by p53 may contribute to its oncogenic and antiapoptotic activity.  相似文献   

9.
Cooperation between p53 and p130(Rb2) in induction of cellular senescence   总被引:1,自引:0,他引:1  
To determine pathways cooperating with p53 in cellular senescence when the retinoblastoma protein (pRb)/p16INK4a pathway is defunct, we stably transfected the p16INK4a-negative C6 rat glioma cell line with a temperature-sensitive mutant p53. Activation of p53(Val-135) induces a switch in pocket protein expression from pRb and p107 to p130(Rb2) and stalls the cells in late G1, early S-phase at high levels of cyclin E. Maintenance of the arrest depends on the functions of p130(Rb2) repressing cyclin A. Inactivation of p53 in senescent cultures restores the pocket proteins to initial levels and initiates progression into S-phase, but the cells fail to resume proliferation, likely due to DNA damage becoming apparent in the arrest and activating apoptosis subsequent to the release from p53-dependent growth suppression. The data indicate that p53 can cooperate selectively with p130(Rb2) to induce cellular senescence, a pathway that may be relevant when the pRb/p16INK4a pathway is defunct.  相似文献   

10.
11.
Mutations of the receptor tyrosine kinase, Kit, or its ligand, mast growth factor (Mgf), affect three unrelated cell populations: melanocytes, germ cells, and mast cells. Kit signaling is required initially to prevent cell death in these lineages both in vitro and in vivo. Mgf appears to play a role in the survival of some hematopoietic cells in vitro by modulating the activity of p53. Signaling by Mgf inhibits p53-induced apoptosis of erythroleukemia cell lines and suppresses p53-dependent radiation-induced apoptosis of bone marrow cells. We tested the hypothesis that cell survival in Kit mutant mice would be enhanced by p53 deficiency in vivo. Double-mutant mice, which have greatly reduced Kit receptor tyrosine kinase activity and also lack Trp53, were generated and the affected cell lineages examined. Mast cell, melanoblast, and melanocyte survival in the double Kit(W-v/W-v):Trp53(-/-) mutants was not increased compared to the single Kit(W-v/W-v):Trp53(+/+) mutants. However, double-mutant males showed an increase in sperm viability and could father litters, in contrast to their homozygous Kit mutant, wild-type p53 littermates. This germ cell rescue appears to be male specific, as female ovaries were similar in mice homozygous for the Kit mutant allele with or without p53. We conclude that defective Kit signaling in vivo results in apoptosis by a p53-independent pathway in melanocyte and mast cell lineages but that in male germ cells apoptosis in the absence of Kit is p53-dependent.  相似文献   

12.
To examine the p53-mediated biological activities and signalling pathways, we generated stable transfectants of the p53-null IW32 murine erythroleukemia cells expressing the temperature-sensitive p53 mutant DNA, tsp53(val135). Two clones with different levels of p53 protein expression were selected for further characterization. At permissive temperature, clone 1-5 cells differentiated along the erythroid pathway, and clone 3-2 cells that produced greater levels (3.5-fold) of p53 underwent apoptosis. Apoptosis of 3-2 cells was accompanied by mitochondrial cytochrome c release and caspase activation as well as by cleavage of caspase substrates. Bax protein was induced to a similar extent in these clones by wild-type p53; expression of p21(Cip1/Waf1) and p27(Kip1) proteins was also increased. However, significantly lesser extent of induction for both CDK inhibitors was detected in the apoptotic 3-2 clone. The general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD.fmk) blocked the p53-induced apoptosis in 3-2 cells, with a concomitant elevation of p27(Kip1), suggesting that p27(Kip1) protein underwent caspase-dependent proteolysis in the apoptotic 3-2 cells. Together these results linked a pathway involving cytochrome c release, caspase activation and p27(Kip1) degradation to the p53-induced apoptosis in IW32 erythroleukemia cells.  相似文献   

13.
14.
The calcium ionophore ionomycin cooperates with the S100B protein to rescue a p53-dependent G(1) checkpoint control in S100B-expressing mouse embryo fibroblasts and rat embryo fibroblasts (REF cells) which express the temperature-sensitive p53Val135 mutant (C. Scotto, J. C. Deloulme, D. Rousseau, E. Chambaz, and J. Baudier, Mol. Cell. Biol. 18:4272-4281, 1998). We investigated in this study the contributions of S100B and calcium-dependent PKC (cPKC) signalling pathways to the activation of wild-type p53. We first confirmed that S100B expression in mouse embryo fibroblasts enhanced specific nuclear accumulation of wild-type p53. We next demonstrated that wild-type p53 nuclear translocation and accumulation is dependent on cPKC activity. Mutation of the five putative cPKC phosphorylation sites on murine p53 into alanine or aspartic residues had no significant effect on p53 nuclear localization, suggesting that the cPKC effect on p53 nuclear translocation is indirect. A concerted regulation by S100B and cPKC of wild-type p53 nuclear translocation and activation was confirmed with REF cells expressing S100B (S100B-REF cells) overexpressing the temperature-sensitive p53Val135 mutant. Stimulation of S100B-REF cells with the PKC activator phorbol ester phorbol myristate acetate (PMA) promoted specific nuclear translocation of the wild-type p53Val135 species in cells positioned in early G(1) phase of the cell cycle. PMA also substituted for ionomycin in the mediating of p53-dependent G(1) arrest at the nonpermissive temperature (37.5 degrees C). PMA-dependent growth arrest was linked to the cell apoptosis response to UV irradiation. In contrast, growth arrest mediated by a temperature shift to 32 degrees C protected S100B-REF cells from apoptosis. Our results suggest a model in which calcium signalling, linked with cPKC activation, cooperates with S100B to promote wild-type p53 nuclear translocation in early G(1) phase and activation of a p53-dependent G(1) checkpoint control.  相似文献   

15.
Genotoxic stress triggers the p53 tumor suppressor network to activate cellular responses that lead to cell cycle arrest, DNA repair, apoptosis or senescence. This network functions mainly through transactivation of different downstream targets, including cell cycle inhibitor p21, which is required for short-term cell cycle arrest or long-term cellular senescence, or proapoptotic genes such as p53 upregulated modulator of apoptosis (PUMA) and Noxa. However, the mechanism that switches from cell cycle arrest to apoptosis is still unknown. In this study, we found that mice harboring a hypomorphic mutant p53, R172P, a mutation that abrogates p53-mediated apoptosis while keeping cell cycle control mostly intact, are more susceptible to ultraviolet-B (UVB)-induced skin damage, inflammation, and immunosuppression than wild-type mice. p53R172P embryonic fibroblasts (MEFs) are hypersensitive to UVB and prematurely senesce after UVB exposure, in stark contrast to wild-type MEFs, which undergo apoptosis. However, these mutant cells are able to repair UV-induced DNA lesions, indicating that the UV hypersensitive phenotype results from the subsequent damage response. Mutant MEFs show an induction of p53 and p21 after UVR, while wild-type MEFs additionally induce PUMA and Noxa. Importantly, p53R172P MEFs failed to downregulate anti-apoptotic protein Bcl-2, which has been shown to play an important role in p53-dependent apoptosis. Taken together, these data demonstrate that in the absence of p53-mediated apoptosis, cells undergo cellular senescence to prevent genomic instability. Our results also indicate that p53-dependent apoptosis may play an active role in balancing cellular growth.  相似文献   

16.
The characteristic progression and specificity of Friend virus for the erythroid lineage have allowed for the identification of a number of host-encoded loci that are required for disease progression. Several of these loci, including the Friend virus susceptibility gene 2 (Fv2), dominant white spotting gene (W), and Steel gene (Sl), regulate the initial polyclonal expansion of infected erythroid progenitor cells. W and Sl encode the Kit receptor tyrosine kinase and its ligand, stem cell factor, respectively. W mutant mice are severely anemic, and earlier work suggested that this defect in erythroid differentiation is the cause for the resistance to Friend virus-induced erythroleukemia. Here we show that in bone marrow, W/W(v) mice have near normal numbers of target cells and the initial infection of bone marrow occurs normally in vivo. In contrast, spleen cells from W/W(v) mice infected both in vitro and in vivo with Friend virus failed to give rise to erythropoietin-independent colonies at any time following Friend virus infection, suggesting that mutation of the Kit receptor specifically affects target cells in the spleen, rendering the mutant mice resistant to the development of Friend virus-induced erythroleukemia. In addition, we show that the Kit+ pathogenic targets of Friend virus in the spleen are distinct from the pathogenic targets in bone marrow and this population of spleen target cells is markedly decreased in W/W(v) mice and these cells fail to express Sf-Stk. These results also underscore the unique nature of the spleen microenvironment in its role in supporting the progression of acute leukemia in Friend virus-infected mice.  相似文献   

17.
18.
The exposure of cells to DNA-damaging agents leads to the accumulation of wild-type p53 protein. Furthermore, overexpression of the wild-type p53, mediated by transfection of p53-coding cDNA, induced cells to undergo apoptosis or cell differentiation. In this study we found that the gamma-irradiation that caused the accumulation of wild-type p53 in 70Z/3 pre-B cells induced, in addition to apoptosis, cell differentiation. This was manifested by the expression of the kappa light chain immunoglobulin gene that coincided with the accumulation of cells at the G2 phase. Overexpression of mutant p53 in 70Z/3 cells interferes with both differentiation and accumulation of cells at the G2 phase, as well as with apoptosis, which were induced by gamma-irradiation. Furthermore, the increment in the wild-type p53 protein level following gamma-irradiation was disrupted in the mutant p53 overproducer-derived cell lines. This suggests that mutant p53 may exert a dominant negative effect in all of these activities. Data presented here show that while p53-induced apoptosis is associated with the G1 checkpoint, p53-mediated differentiation, which may be an additional pathway to escape the fixation of genetic errors, may be associated with the G2 growth arrest phase.  相似文献   

19.
The cell cycle of multicellular organisms must be tightly coordinated with organogenesis and differentiation. Experiments done in vitro have identified chromatin assembly factor 1 (CAF-1) as a protein complex promoting chromatin assembly during DNA replication, but the in vivo role of CAF-1 in multicellular animals is still poorly understood. Here we describe the characterization of a zebrafish mutant disrupting CAF-1b activity, and show that it leads to defective cell cycle progression and differentiation in several organs, including the retina, optic tectum, pectoral fins, and head skeleton. Retinal precursor cells mutant for caf-1b arrest in S phase and undergo p53-mediated apoptosis. While p53 deficiency is able to rescue apoptosis in caf-1b mutants, it fails to rescue differentiation, indicating that CAF-1 activity is essential for differentiation in these organs. In addition, we also show that regulation of caf-1b expression in the retina depends on a group of genes that regulate the switch from proliferation to differentiation.  相似文献   

20.
Genotoxic stress triggers the p53 tumor suppressor network to activate cellular responses that lead to cell cycle arrest, DNA repair, apoptosis or senescence. This network functions mainly through transactivation of different downstream targets, including cell cycle inhibitor p21, which is required for short-term cell cycle arrest or long-term cellular senescence, or proapoptotic genes such as p53 upregulated modulator of apoptosis (PUMA) and Noxa. However, the mechanism that switches from cell cycle arrest to apoptosis is still unknown. In this study, we found that mice harboring a hypomorphic mutant p53, R172P, a mutation that abrogates p53-mediated apoptosis while keeping cell cycle control mostly intact, are more susceptible to ultraviolet-B (UVB)-induced skin damage, inflammation and immunosuppression than wild-type mice. p53R172P embryonic fibroblasts (MEFs) are hypersensitive to UVB and prematurely senesce after UVB exposure, in stark contrast to wild-type MEFs, which undergo apoptosis. However, these mutant cells are able to repair UV-induced DNA lesions, indicating that the UV-hypersensitive phenotype results from the subsequent damage response. Mutant MEFs show an induction of p53 and p21 after UVR, while wild-type MEFs additionally induce PUMA and Noxa. Importantly, p53R172P MEFs failed to downregulate anti-apoptotic protein Bcl-2, which has been shown to play an important role in p53-dependent apoptosis. Taken together, these data demonstrate that in the absence of p53-mediated apoptosis, cells undergo cellular senescence to prevent genomic instability. Our results also indicate that p53-dependent apoptosis may play an active role in balancing cellular growth.Key words: UVB irradiation, p53, DNA damage, DNA damage responses, apoptosis, senescence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号