首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cardiac conduction system is a complex network of cells that together orchestrate the rhythmic and coordinated depolarization of the heart. The molecular mechanisms regulating the specification and patterning of cells that form this conductive network are largely unknown. Studies in avian models have suggested that components of the cardiac conduction system arise from progressive recruitment of cardiomyogenic progenitors, potentially influenced by inductive effects from the neighboring coronary vasculature. However, relatively little is known about the process of conduction system development in mammalian species, especially in the mouse, where even the histological identification of the conductive network remains problematic. We have identified a line of transgenic mice where lacZ reporter gene expression delineates the developing and mature murine cardiac conduction system, extending proximally from the sinoatrial node to the distal Purkinje fibers. Optical mapping of cardiac electrical activity using a voltage-sensitive dye confirms that cells identified by the lacZ reporter gene are indeed components of the specialized conduction system. Analysis of lacZ expression during sequential stages of cardiogenesis provides a detailed view of the maturation of the conductive network and demonstrates that patterning occurs surprisingly early in embryogenesis. Moreover, optical mapping studies of embryonic hearts demonstrate that a murine His-Purkinje system is functioning well before septation has completed. Thus, these studies describe a novel marker of the murine cardiac conduction system that identifies this specialized network of cells throughout cardiac development. Analysis of lacZ expression and optical mapping data highlight important differences between murine and avian conduction system development. Finally, this line of transgenic mice provides a novel tool for exploring the molecular circuitry controlling mammalian conduction system development and should be invaluable in studies of developmental mutants with potential structural or functional conduction system defects.  相似文献   

2.
3.
Islet1 (Isl1) is a LIM homedomain protein that plays a pivotal role in cardiac progenitors of the second heart field. Here, lineage studies with an inducible isl1-cre demonstrated that most Isl1 progenitors have migrated into the heart by E9. Although Isl1 expression is downregulated in most cardiac progenitors as they differentiate, analysis of an isl1-nlacZ mouse and coimmunostaining for Isl1 and lineage markers demonstrated that Isl1 is expressed in distinct subdomains of the heart, and in diverse cardiovascular lineages. Isl1 expression was observed in myocardial lineages of the distal outflow tract, atrial septum, and in sinoatrial and atrioventricular node. The myocardialized septum of the outflow tract was found to derive from Isl1 expressing cells. Isl1 expressing cells also contribute to endothelial and vascular smooth muscle lineages including smooth muscle of the coronary vessels. Our data indicate that Isl1 is a specific marker for a subset of pacemaker cells at developmental stages examined, and suggest genetic heterogeneity within the central conduction system and coronary smooth muscle. Our studies suggest a role for Isl1 in these distinct domains of expression within the heart.  相似文献   

4.
Normal heart function is critically dependent on the timing and coordination provided by a complex network of specialized cells: the cardiac conduction system. We have employed functional assays in zebrafish to explore early steps in the patterning of the conduction system that previously have been inaccessible. We demonstrate that a ring of atrioventricular conduction tissue develops at 40 hours post-fertilization in the zebrafish heart. Analysis of the mutant cloche reveals a requirement for endocardial signals in the formation of this tissue. The differentiation of these specialized cells, unlike that of adjacent endocardial cushions and valves, is not dependent on blood flow or cardiac contraction. Finally, both neuregulin and notch1b are necessary for the development of atrioventricular conduction tissue. These results are the first demonstration of the endocardial signals required for patterning central ;slow' conduction tissue, and they reveal the operation of distinct local endocardial-myocardial interactions within the developing heart tube.  相似文献   

5.
Cell transplantation to repair or regenerate injured myocardium is a new frontier in the treatment of cardiovascular disease. Most studies on stem cell transplantation therapy in both experimental heart infarct and in phase-I human clinical trials have focused on the use of undifferentiated stem cells. Based on our previous observations demonstrating the presence of multipotent progenitor cells in human adult skeletal muscle, in this study we investigated the capacity of these progenitors to differentiate into cardiomyocytes. Here we show an efficient protocol for the cardiomyogenic differentiation of human adult skeletal muscle stem cells in vitro. We found that treatment with Retinoic Acid directed cardiomyogenic differentiation of skeletal muscle stem cells in vitro. After Retinoic Acid treatment, cells expressed cardiomyocyte markers and acquired spontaneous contraction. Functional assays exhibited cardiac-like response to increased extracellular calcium. When cocultured with mouse cardiomyocytes, Retinoic Acid-treated skeletal muscle stem cells expressed connexin43 and when transplanted into ischemic heart were detectable even 5 weeks after injection. Based on these results, we can conclude that human adult skeletal muscle stem cells, if opportunely treated, can transdifferentiate into cells of cardiac lineage and once injected into infarcted heart can integrate, survive in cardiac tissue and improve the cardiac function.  相似文献   

6.
We previously demonstrated that alpha 6 (Cx45), one of the three connexins of the mammalian myocardium, is preferentially expressed in the peripheral portion of the ventricular conduction system in rats and mice. Here we report that alpha 6 is also prominently immunolocalized in the atrioventricular node and His bundle of these species. The distribution of immunolocalized alpha 6 reveals that the node and bundle form part of an extended central conductive network circumscribing the AV and outflow junctional regions of the fetal, and less continuously, the adult heart. Of the three cardiac connexins, alpha 6 is the isoform most continuously expressed by conduction tissues, and may thus account for the recently reported viability of the alpha 5 (Cx40) knockout mouse. It is concluded that alpha 6 expression is a defining feature of the heterogenous tissues comprising the atrioventricular conduction system of the rodent heart.  相似文献   

7.
Results from lineage tracing studies indicate that precursor cells in the ventricles give rise to both cardiac muscle and conduction cells. Cardiac conduction cells are specialized cells responsible for orchestrating the rhythmic contractions of the heart. Here, we show that Notch signaling plays an important role in the differentiation of cardiac muscle and conduction cell lineages in the ventricles. Notch1 expression coincides with a conduction marker, HNK-1, at early stages. Misexpression of constitutively active Notch1 (NIC) in early heart tubes in chick exhibited multiple effects on cardiac cell differentiation. Cells expressing NIC had a significant decrease in expression of cardiac muscle markers, but an increase in expression of conduction cell markers, HNK-1, and SNAP-25. However, the expression of the conduction marker connexin 40 was inhibited. Loss-of-function study, using a dominant-negative form of Suppressor-of-Hairless, further supports that Notch1 signaling is important for the differentiation of these cardiac cell types. Functional studies show that the expression of constitutively active Notch1 resulted in abnormalities in ventricular conduction pathway patterns.  相似文献   

8.
Myofiber cultures give rise to myogenic as well as to non-myogenic cells. Whether these myofiber-associated non-myogenic cells develop from resident stem cells that possess mesenchymal plasticity or from other stem cells such as mesenchymal stem cells (MSCs) remain unsolved. To address this question, we applied a method for reconstructing cell lineage trees from somatic mutations to MSCs and myogenic and non-myogenic cells from individual myofibers that were cultured at clonal density.Our analyses show that (i) in addition to myogenic progenitors, myofibers also harbor non-myogenic progenitors of a distinct, yet close, lineage; (ii) myofiber-associated non-myogenic and myogenic cells share the same muscle-bound primordial stem cells of a lineage distinct from bone marrow MSCs; (iii) these muscle-bound primordial stem-cells first part to individual muscles and then differentiate into myogenic and non-myogenic stem cells.  相似文献   

9.
The ability of undifferentiated cardiogenic mesoderm to generate diversified myogenic phenotypes was assayed in a minimal culture system. During cardiogenesis in vivo, the anterior and posterior segments of the avian heart have distinct patterns of contractile protein gene expression when they first differentiate. To assess the potential of undifferentiated cardiogenic tissue to diversify into distinct anterior and posterior lineages prior to heart formation, cardiogenic mesoderm and endoderm were removed together from the embryo at Hamburger and Hamilton stages 4-8. Explants from each of these stages differentiated in defined medium as indicated by the expression of muscle-specific genes. However, the ability to express the atrial-specific myosin heavy chain (AMHC1) mRNA was confined to posterior cardiac progenitors. Diversification was not dependent on anterior endoderm, suggesting that inductive interactions between the mesoderm and endoderm are not necessary to maintain diversified cardiac lineages after stage 4. The diversified potential of explanted cardiogenic tissue was altered with retinoic acid treatment, resulting in the activation of AMHC1 gene expression in the anterior progenitors. Anterior cardiogenic cells removed from the embryo at stage 8, when the heart begins to differentiate in vivo, are not susceptible to the alteration of diversified phenotype by retinoic acid treatment. Therefore, the potential to form distinct cardiomyogenic cell lineages is present in the anterior lateral plate mesoderm soon after gastrulation and the maturation of these lineages in a positionally dependent manner is maintained in a simple defined culture system in vitro.  相似文献   

10.
11.
12.
The cardiac conduction system (CCS) is a specialized tissue network that initiates and maintains a rhythmic heartbeat. The CCS consists of several functional subcomponents responsible for producing a pacemaking impulse and distributing action potentials across the heart in a coordinated manner. The formation of the distinct subcomponents of the CCS occurs within a precise temporal and spatial framework; thereby assuring that as the system matures from a tubular to a complex chambered organ, a rhythmic heartbeat is always maintained. Therefore, a defect in differentiation of any CCS component would lead to severe rhythm disturbances. Recent molecular, cell biological and physiological approaches have provided fresh and unexpected perspectives of the relationships between cell fate, gene expression and differentiation of specialized function within the developing myocardium. In particular, biomechanical forces created by the heartbeat itself have important roles in the inductive patterning and functional integration of the developing conduction system. This new understanding of the cellular origin and molecular induction of CCS tissues during embryogenesis may provide the foundation for tissue engineering, replacement and repair of these essential cardiac tissues in the future.  相似文献   

13.
14.
Stromal cells from fat tissues exhibit properties of mesenchymal stem cells from other sources with the ability to differentiate towards multiple cell types. However, effective differentiation of these mesenchymal cells, called adipose-derived stem cells (ADSCs), towards cardiomyogenic lineage has been limited to a small number of isolated clones in an extended culture. Previously, we reported that treatment with phorbol ester induces the expression of several cardiomyogenic genes in the absence of serum. This study was performed to identify the roles of PKC isoforms in cardiomyogenic gene expression of ADSCs. Treatment with 10 nM phorbol myristate acetate (PMA) for 24 h caused sustained increases in mRNA levels for various cardiomyogenic genes, such as Mef2C, cardiac actin and troponin, for at least 6 days following the drug removal. The use of various inhibitors specific for PKC isoforms demonstrated that the novel PKC-theta/delta isoforms mediate the PMA effects. RT-PCR revealed that ADSCs express significant mRNA for PKC-delta, but not theta isoform. Overexpression of cDNA for PKC-delta resulted in marked increases in cardiac mRNA expression. These results indicate that activation of PKC-delta induces the expression of multiple cardiomyogenic genes in ADSCs.  相似文献   

15.
16.
心脏祖细胞(cardiac progenitor cells,CPCs)的研究对阐明先天性心脏病的机制及治疗心血管疾病具有重要意义.哺乳动物的心脏组织由多种不同CPCs分化形成.转录因子Tbx18在发育中的心外膜中表达,对心脏的发育形成起重要的调节作用.为了在组织及活体细胞水平检测和阐明Tbx18+CPC的分化潜能,应用Cre-LoxP系统建立Tbx18+CPCs基因命运谱系示踪模型:Tbx18-Cre/Rosa26R-EYFP和Tbx18-Cre/Rosa26R-LacZ双杂合基因敲入小鼠.该双杂合基因敲入小鼠通过Cre的表达能有效地示踪Tbx18+细胞在胚胎和成年小鼠中的分化命运.Tbx18-Cre/Rosa26R-EYFP双杂合小鼠心脏能非常容易地利用流式细胞分选系统(FACS)分离出YFP+细胞,也可在倒置共聚焦显微镜下观察.应用X-gal染色分析其表达模式,揭示Tbx18命运谱系参与心房肌、室间隔、心室肌、冠状动脉、瓣膜等的形成.应用免疫荧光技术初步揭示Tbx18+CPCs向心脏肌钙蛋白T(cTNT)阳性心肌细胞和平滑肌肌球蛋白重链11(MYH11)阳性血管平滑肌细胞分化的潜能.心脏是一个由多种肌肉和非肌肉组织细胞构成的复杂器官.推测Tbx18可能在心脏祖细胞向肌源性细胞分化的信号通路中起重要调节作用.在上述研究中应用基因谱系示踪技术,验证Tbx18可作为一类CPCs的标志,为更深入揭示心脏祖细胞向心系细胞的分化潜能打下基础.  相似文献   

17.
18.
Correct delineation of the hierarchy of cardiac progenitors is a key step to understanding heart development, and will pave the way for future use of cardiac progenitors in the treatment of heart disease. Multipotent Nkx2-5 and Isl1 cardiac progenitors contribute to cardiomyocyte, smooth muscle, and endothelial lineages, which constitute the major lineages of the heart. Recently, progenitors located within the proepicardium and epicardium were reported to differentiate into cardiomyocytes, as well as smooth muscle and endothelial cells. However, the relationship of these proepicardial progenitors to the previously described Nkx2-5 and Isl1 cardiac progenitors is incompletely understood. To address this question, we performed in vivo Cre-loxP-based lineage tracing. Both Nkx2-5- and Isl1-expressing progenitors contributed to the proepicardium and expressed Wt1 and Tbx18, markers of proepicardial progenitor cells. Interestingly, Nkx2-5 knockout resulted in abnormal proepicardial development and decreased expression of Wt1, suggesting a functional role for Nkx2-5 in proepicardium formation. Taken together, these results suggest that Nkx2-5 and/or Isl1 cardiac progenitors contribute to proepicardium during heart development.  相似文献   

19.
20.
The cardiac conduction system is a specialized network that initiates and closely coordinates the heart beat. Cardiac conduction system development is intricately related to the development and maturation of the embryonic heart towards its four-chambered form, as is indicated by the fact that disturbed development of cardiac structures is often accompanied by a disturbed formation of the CCS. Electrophysiological studies have shown that selected conduction disturbances and cardiac arrhythmias do not take place randomly in the heart but rather at anatomical predilection sites. Knowledge on development of the CCS may facilitate understanding of the etiology of arrhythmogenic events. In this review we will focus on embryonic development of the CCS in relation to clinical arrhythmias, as well as on specific cardiac conduction abnormalities that are observed in patients with congenital heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号