首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Quorum sensing gives rise to biofilm formation on the membrane surface, which in turn causes a loss of water permeability in membrane bioreactors (MBRs) for wastewater treatment. Enzymatic quorum quenching was reported to successfully inhibit the formation of biofilm in MBRs through the decomposition of signal molecules, N-acyl homoserine lactones (AHLs). The aim of this study was to elucidate the mechanisms of quorum quenching in more detail in terms of microbial population dynamics and proteomics. Microbial communities in MBRs with and without a quorum quenching enzyme (acylase) were analyzed using pyrosequencing and compared with each other. In the quorum quenching MBR, the rate of transmembrane pressure (TMP) rise-up was delayed substantially, and the proportion of quorum sensing bacteria with AHL-like autoinducers (such as Enterobacter, Pseudomonas, and Acinetobacter) also decreased in the entire microbial community of mature biofilm in comparison to that in the control MBR. These factors were attributed to the lower production of extracellular polymeric substances (EPS), which are known to play a key role in the formation of biofilm. Proteomic analysis using the Enterobacter cancerogenus strain ATCC 35316 demonstrates the possible depression of protein expression related to microbial attachments to solid surfaces (outer membrane protein, flagellin) and the agglomeration of microorganisms (ATP synthase beta subunit) with the enzymatic quorum quenching. It has been argued that changes in the microbial population, EPS and proteins via enzymatic quorum quenching could inhibit the formation of biofilm, resulting in less biofouling in the quorum quenching MBR.  相似文献   

2.
Lab-scale membrane bioreactors (MBRs) were investigated at 12, 18, and 25?°C to identify the correlation between quorum sensing (QS) and biofouling at different temperatures. The lower the reactor temperature, the more severe the membrane biofouling measured in terms of the transmembrane pressure (TMP) during filtration. More extracellular polymeric substances (EPSs) that cause biofouling were produced at 18?°C than at 25?°C, particularly polysaccharides, closely associated with QS via the production of N-acyl homoserine lactone (AHL). However, at 12?°C, AHL production decreased, but the release of EPSs due to deflocculation increased the soluble EPS concentration. To confirm the temperature effect related to QS, bacteria producing AHL were isolated from MBR sludge and identified as Aeromonas sp., Leclercia sp., and Enterobacter sp. through a 16S rDNA sequencing analysis. Batch assays at 18 and 25?°C showed that there was a positive correlation between QS through AHL and biofilm formation in that temperature range.  相似文献   

3.
【背景】近年来,群体感应淬灭(Quorum Quenching,QQ)技术在膜生物污堵防控中的应用研究受到了广泛关注。然而,目前已成功分离纯化的高效QQ菌有限,更多高效QQ菌资源亟待挖掘。【目的】从实际运行的膜生物反应器(MembraneBioreactor,MBR)活性污泥中采样,分离并富集高效QQ菌。【方法】以根瘤农杆菌(Agrobacterium tumefaciens) A136为报告菌株,使用指示琼脂平板法测定各菌株的N-辛酰基高丝氨酸内酯(N-Octanoyl-DL-Homoserine Lactone,C8-HSL)降解能力。以紫色色杆菌(Chromobacterium violaceum) VIR24为报告菌株,定量测定所得QQ菌降解N-己酰高丝氨酸内酯(N-Hexanoyl-DL-Homoserine Lactone,C6-HSL)信号分子的能力。通过微生物形态、生理生化及16SrRNA基因序列测定、构建系统发育树、扫描电子显微镜形态观测等方法对菌株进行分类学鉴定。用共培养法分析QQ菌对生物膜形成的抑制能力,通过聚乙烯醇和海藻酸钠包埋固定化QQ菌。【结果】筛选出了6株高效QQ菌,其中对C8-HSL分解能力最强的为杆状、革兰氏阴性戴尔福特菌属(Delftia sp.) JL5。定量分析结果表明菌株JL5能在10 h内完全降解C6-HSL。菌株JL5显著抑制铜绿假单胞菌(Pseudomonas aeruginosa) PAO1和菠萝泛菌(Pantoea ananatis) SK-1生物膜的形成。固定化后的JL5微球仍具有高效的C6-HSL和C8-HSL信号分子分解能力,而且分解速度较被广泛报道的红球菌(Rhodococcussp.)BH4更快。【结论】研究分离得到了高效的QQ菌,能够有效抑制N-酰基高丝氨酸内酯(N-Acyl-HomoserineLactones,AHL)型群体感应菌生物膜的形成,固定化后仍然具有强QQ活性,具备广泛的应用前景,为后续QQ膜生物污堵防控技术的实践应用奠定了基础。  相似文献   

4.
Abstract

Various quorum quenching (QQ) media have been developed to mitigate membrane biofouling in a membrane bioreactor (MBR). However, most are expensive, unstable and easily trapped in hollow fibre membranes. Here, a sol-gel method was used to develop a mesoporous silica medium entrapping a QQ bacterial strain (Rhodococcus sp. BH4). The new silica QQ medium was able to remove quorum sensing signalling molecules via both adsorption (owing to their mesoporous hydrophobic structure) and decomposition with an enzyme (lactonase), preventing MBR biofouling without affecting the water quality. It also demonstrated a relatively long life span due to its non-biodegradability and its relatively small particle size (<1.0?mm), which makes it less likely to clog in a hollow fibre membrane module.  相似文献   

5.
To investigate quorum sensing in rhizosphere soil, a whole-cell biosensor, Agrobacterium tumefaciens(pAHL-Ice), was constructed. The biosensor responded to all N-acyl homoserine lactones (AHLs) tested, except C4 homoserine lactone, with a minimum detection limit of 10−12 M, as well as to both exogenously added AHLs and AHL-producing bacterial strains in soil. This highly sensitive biosensor reveals for the first time the increased AHL availability in intact rhizosphere microbial communities compared to that in bulk soil.  相似文献   

6.
Some members of the moderately halophilic genus Halomonas, such as H. eurihalina, H. maura, H. ventosae and H. anticariensis, produce exopolysaccharides with applications in many industrial fields. We report here that these four species also produce autoinducer molecules that are involved in the cell-to-cell signaling process known as quorum sensing. By using the N-acyl homoserine lactone (AHL) indicator strains Agrobacterium tumefaciens NTL4 (pZRL4) and Chromobacterium violaceum CV026, we discovered that all the Halomonas strains examined synthesize detectable AHL signal molecules. The synthesis of these compounds was growth-phase dependent and maximal activity was reached during the late exponential to stationary phases. One of these AHLs seems to be synthesized only in the stationary phase. Some of the AHLs produced by H. anticariens FP35T were identified by gas chromatography/mass spectrometry and electrospray ionization tandem mass spectrometry as N-butanoyl homoserine lactone (C4-HL), N-hexanoyl homoserine lactone (C6-HL), N-octanoyl homoserine lactone (C8-HL) and N-dodecanoyl homoserine lactone (C12-HL). This study suggests that quorum sensing may also play an important role in extreme environments.  相似文献   

7.

Background

Turf soil bacterial isolate Delftia sp. VM4 can degrade exogenous N-acyl homoserine lactone (AHL), hence it effectively attenuates the virulence of bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum strain BR1 (Pcc BR1) as a consequence of quorum sensing inhibition.

Methodology/Principal Findings

Isolated Delftia sp. VM4 can grow in minimal medium supplemented with AHL as a sole source of carbon and energy. It also possesses the ability to degrade various AHL molecules in a short time interval. Delftia sp. VM4 suppresses AHL accumulation and the production of virulence determinant enzymes by Pcc BR1 without interference of the growth during co-culture cultivation. The quorum quenching activity was lost after the treatment with trypsin and proteinase K. The protein with quorum quenching activity was purified by three step process. Matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) and Mass spectrometry (MS/MS) analysis revealed that the AHL degrading enzyme (82 kDa) demonstrates homology with the NCBI database hypothetical protein (Daci_4366) of D. acidovorans SPH-1. The purified AHL acylase of Delftia sp. VM4 demonstrated optimum activity at 20–40°C and pH 6.2 as well as AHL acylase type mode of action. It possesses similarity with an α/β-hydrolase fold protein, which makes it unique among the known AHL acylases with domains of the N-terminal nucleophile (Ntn)-hydrolase superfamily. In addition, the kinetic and thermodynamic parameters for hydrolysis of the different AHL substrates by purified AHL-acylase were estimated. Here we present the studies that investigate the mode of action and kinetics of AHL-degradation by purified AHL acylase from Delftia sp. VM4.

Significance

We characterized an AHL-inactivating enzyme from Delftia sp. VM4, identified as AHL acylase showing distinctive similarity with α/β-hydrolase fold protein, described its biochemical and thermodynamic properties for the first time and revealed its potential application as an anti-virulence agent against bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum based on quorum quenching mechanism.  相似文献   

8.
N-acyl homoserine lactone (AHL)-based quorum sensing (QS) has been recognized to play an important role in the formation of biofilm. However, aerobic granular sludge is considered as a special biofilm, and its biological implication and role of AHL-based QS still remain unclear. This study investigated the role of AHL-based QS in aerobic granulation. Results showed that AHLs were necessary to the typical aerobic granulation, and AHL-associated coordination of bacteria in sludge aggregation was sludge density dependent only when it reached a threshold of 1.010 g/mL; AHL-based QS was activated to regulate aerobic granulation. Furthermore, a quorum quenching method was firstly adopted to investigate the role of AHLs in aerobic granules. Results showed inhibition of AHL by acylase that reduced the AHL content in aerobic granules and further weakened its attachment potential, which proved that AHLs play an important role in the formation of aerobic granules. Additionally, the assay of quorum quenching not only proved that AHL-based QS could regulate EPS production but also provided additional evidence for the role of AHLs in aerobic granulation by regulating EPS content and its component proportion.  相似文献   

9.
Bacterial quorum sensing signal molecules called N-acylhomoserine lactone (AHL) controls the expression of virulence determinants in many Gram-negative bacteria. We determined AHL production in 22 Aeromonas strains isolated from various infected sites from patients (bile, blood, peritoneal fluid, pus, stool and urine). All isolates produced the two principal AHLs, N-butanoylhomoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL). Ten isolates also produced additional AHLs. This report is the first documentation of Aeromonas sobria producing C6-HSL and two additional AHLs with N-acyl side chain longer than C6. Our data provides a better understanding of the mechanism(s) of this environmental bacterium emerging as a human pathogen.  相似文献   

10.

Background  

Only a small number of Pseudomonas putida strains possess the typical N-acyl homoserine lactone quorum sensing system (AHL QS) that consists of a modular LuxR family protein and its cognate LuxI homolog that produces the AHL signal. Moreover, AHL QS systems in P. putida strains are diverse in the type of AHLs they produce and the phenotypes that they regulate.  相似文献   

11.
The knowledge that many pathogens rely on cell-to-cell communication mechanisms known as quorum sensing, opens a new disease control strategy: quorum quenching. Here we report on one of the rare examples where Gram-positive bacteria, the ‘Staphylococcus intermedius group’ of zoonotic pathogens, excrete two compounds in millimolar concentrations that suppress the quorum sensing signaling and inhibit the growth of a broad spectrum of Gram-negative beta- and gamma-proteobacteria. These compounds were isolated from Staphylococcus delphini. They represent a new class of quorum quenchers with the chemical formula N-[2-(1H-indol-3-yl)ethyl]-urea and N-(2-phenethyl)-urea, which we named yayurea A and B, respectively. In vitro studies with the N-acyl homoserine lactone (AHL) responding receptor LuxN of V. harveyi indicated that both compounds caused opposite effects on phosphorylation to those caused by AHL. This explains the quorum quenching activity. Staphylococcal strains producing yayurea A and B clearly benefit from an increased competitiveness in a mixed community.  相似文献   

12.
13.

Background  

The infection and virulence functions of diverse plant and animal pathogens that possess quorum sensing systems are regulated by N-acylhomoserine lactones (AHLs) acting as signal molecules. AHL-acylase is a quorum quenching enzyme and degrades AHLs by removing the fatty acid side chain from the homoserine lactone ring of AHLs. This blocks AHL accumulation and pathogenic phenotypes in quorum sensing bacteria.  相似文献   

14.
Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 105 s−1 M−1. Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the “HXHXDH” motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent.  相似文献   

15.
Acylated homoserine lactones (AHLs) are self-generated signal molecules that mediate population density-dependent gene expression (quorum sensing) in a variety of Gram-negative bacteria. These signal molecules diffuse from bacterial cells and accumulate in the medium as a function of cell growth. In selected foods AHLs contribute to product spoilage. As different bacterial species produce AHL analogs that differ in length of the N-acyl chain, ranging from 4 to 14 carbons and in the substitution at the C-3 position of the side chain (i.e., oxo or hydroxyl group), the suitability and applicability of a gas chromatography-mass spectrometry direct method for characterizing trace amounts of AHLs was evaluated using N-heptanoyl-homoserine lactone as internal standard. Crude cell-free supernatants of bacterial cultures of Aeromonas hydrophila, Aeromonas salmonicida, Pseudomonas aeruginosa, Pseudomonas fluorescens, Yersinia enterocolitica, and Serratia liquefaciens were screened for AHL production in selected ion monitoring mode, using the prominent fragment at m/z 143. The observed profiles of distinguishable N-acyl-homoserine lactones occurring in bacterial extracts were compared and discussed. The presence of a labile 3-oxo-hexanoylhomoserine lactone was evidenced but serious difficulties arose in estimating its concentration as thermal degradation occurs during the gas chromatographic separation. Its electron impact mass spectra was, however, given and interpreted.  相似文献   

16.
Wang H  Zhong Z  Cai T  Li S  Zhu J 《Archives of microbiology》2004,182(6):520-525
Quorum-sensing is widespread among many prokaryotic lineages. In order to investigate quorum regulation in the plant bacterium Mesorhizobium huakuii which produces an N-acyl homoserine lactone (AHL) quorum signal, the Agrobacterium quorum-sensing regulator TraR was heterologously expressed in this bacterium. The resulting strains showed reduced AHL production in the supernatant compared to wild-type, but similar intracellular levels of AHLs were detected, suggesting that M. huakuii AHLs can be bound to intracellular TraR proteins and thus become unavailable for its own quorum systems. M. huakuii overexpressing TraR formed thinner biofilms than the wild-type, suggesting a role played by quorum-sensing in biofilm formation.Hui Wang and Zengtao Zhong contributed equally to this work.  相似文献   

17.
Quorum sensing is a regulatory system for controlling gene expression in response to increasing cell density. N-Acylhomoserine lactone (AHL) is produced by gram-negative bacteria, which use it as a quorum-sensing signal molecule. Serratia marcescens is a gram-negative opportunistic pathogen which is responsible for an increasing number of serious nosocomial infections. S. marcescens AS-1 produces N-hexanoyl homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine lactone and regulates prodigiosin production, swarming motility, and biofilm formation by AHL-mediated quorum sensing. We synthesized a series of N-acyl cyclopentylamides with acyl chain lengths ranging from 4 to 12 and estimated their inhibitory effects on prodigiosin production in AS-1. One of these molecules, N-nonanoyl-cyclopentylamide (C9-CPA), had a strong inhibitory effect on prodigiosin production. C9-CPA also inhibited the swarming motility and biofilm formation of AS-1. A competition assay revealed that C9-CPA was able to inhibit quorum sensing at four times the concentration of exogenous C6-HSL and was more effective than the previously reported halogenated furanone. Our results demonstrated that C9-CPA was an effective quorum-sensing inhibitor for S. marcescens AS-1.  相似文献   

18.
Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. The purpose of this study was to investigate the production of N-acyl-homoserine lactone (AHL) signal molecules and some virulence factors, including hemolysins, proteases, extracellular nucleases production and cytotoxicity by waterborne Aeromonas hydrophila. A total of 24 strains isolated from fresh-water or diseased fish were used in the study. The majority A.hydrophila strains produce two AHL molecules (21/24), one is N-butanoyl homoserine lactone (BHL), and the other is N-hexanoyl homoserine lactone (HHL) according to thin-layer chromatography analysis. Among the virulence factors tested, more than 83 % of the isolates produced β haemolysin when inoculated on sheep blood agar, only 50 % of the isolates displayed DNase activity, 75 % of the isolates shown proteolytic activity on skimmed milk plate, and cytotoxic activity was detected in 20 of 24 of the isolates. The strains producing AHLs possessed one or more virulence factors. In conclusion, the production of quorum sensing signal molecules is common among the strains that we examined, and there seems to some relationships between quorum sensing signal production and virulence factors in A. hydrophila.  相似文献   

19.
《Process Biochemistry》2010,45(12):1944-1948
N-Acyl homoserine lactone (AHL) is a widespread quorum sensing signal molecule in Gram-negative bacteria and has an important role in many biological processes. However, it is still poorly understood whether or not AHL is present in pollutant treatment processes and further, what its role is in biodegradation processes. In this work, an environmental isolate of Pseudomonas aeruginosa CGMCC 1.860 that is an aromatic degrader and AHL producer was selected. The AHL plate bioassay indicated that AHL was produced by this strain during biodegradation of aromatic compounds including phenol, benzoate, p-hydroxy-benzoate, salicylate, and naphthalene. The AHLs were identified as N-butyryl-l-homoserine lactone (BHL) and N-hexanoyl-l-homoserine lactone (HHL) by using thin layer chromatography (TLC) and high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry (HPLC–APCI-MS/MS) analyses. Furthermore, phenol biodegradation was improved by exogenously added AHL extracts or by endogenously over-produced AHLs, repressed by abolishment of AHLs production, and not affected by the addition of extracts without AHLs. The results indicated that AHL was involved in the process of biodegradation of pollutants.  相似文献   

20.
Enzymatic degradation of N-acyl homoserine lactone (NAHL) was found to interfere with the quorum sensing (QS) system and related functions in several soil bacteria. In this research, the NAHL lactonase gene aiiA was amplified using aiiA-7F/aiiA7R PCR primers from the quorum sensing inhibitor rhizobacterium Bacillus sp. strain DMS133, and cloned. The plasmid pME7075, carrying the DMS133 aiiA gene under the constitutive lac promoter, was introduced into the plant pathogen Pectobacterium carotovorum EMPCC, creating strain EMPCC/aiiA. Heterologous expression of the DMS133 aiiA gene in EMPCC severely reduced the accumulation of the NAHL throughout growth, and completely prevented pigmentation of the CV026 bioreporter strain. Virulence analysis revealed that the P. carotovorum strain EMPCC/aiiA expressing AiiA lactonase had drastically reduced tissue maceration activity compared with the wild type EMPCC strain. These results provide evidence that AiiA plays an important role in the quorum quenching ability of Bacillus sp. DMS133 whose AHL degradation capacity was investigated previously. In addition, the communication signal-inactivation approach represents a promising strategy for the prevention of diseases in which virulence is regulated by QS signal molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号