首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous experiments have demonstrated that positive selection markers recombined into the Epstein-Barr virus (EBV) genome enable the isolation of transforming or nontransforming mutant EBV recombinants in EBV-negative B-lymphoma (BL) cell lines (A. Marchini, J. I. Cohen, and E. Kieff, J. Virol. 66:3214-3219, 1992; F. Wang, A. Marchini, and E. Kieff, J. Virol. 65:1701-1709, 1991). However, virus has been recovered from a BL cell clone (BL41) infected with an EBV recombinant in only one instance (Wang et al., J. Virol. 65:1701-1709, 1991). We now compare the utility of four EBV-negative BL lines, BJAB, BL30, BL41, and Loukes, for isolating EBV recombinants and supporting their subsequent replication. Transforming or nontransforming EBV recombinants carrying a simian virus 40 promoter-hygromycin phosphotransferase (HYG) cassette were cloned by selecting newly infected BL cells for HYG expression. Most of the infected BL clones contained EBV episomes, and EBV gene expression was largely restricted to EBNA-1. Although the BJAB cell line was a particularly good host for isolating EBV recombinants (Marchini et al., J. Virol. 66:3214-3219, 1992), it was largely nonpermissive for virus replication, even in response to heterologous expression of the BZLF1 immediate-early transactivator. In contrast, approximately 50% of infected BL41, BL30, or Loukes cell clones responded to lytic cycle induction. Frequently, a substantial fraction of infected cells expressed the late lytic infection viral protein, gp350/220, and released infectious virus. Since BL cells do not depend on EBV for growth, transforming and nontransforming EBV recombinants were isolated and passaged.  相似文献   

2.
F Wang  A Marchini    E Kieff 《Journal of virology》1991,65(4):1701-1709
The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recovered. In these experiments we investigated whether a toxic drug resistance gene, guanine phosphoribosyltransferase or hygromycin phosphotransferase, driven by the simian virus 40 promoter can be recombined into the EBV genome and can function to identify B-lymphoma cells infected with recombinant virus. Two different strategies were used to recombine the drug resistance marker into the EBV genome. Both utilized transfection of partially permissive, EBV-infected B95-8 cells and positive selection for cells which had incorporated a functional drug resistance gene. In the first series of experiments, B95-8 clones were screened for transfected DNA that had recombined into the EBV genome. In the second series of experiments, the transfected drug resistance marker was linked to the plasmid and lytic EBV origins so that it was maintained as an episome and could recombine with the B95-8 EBV genome during virus replication. The recombinant EBV from either experiment could be recovered by infection and toxic drug selection of EBV-negative B-lymphoma cells. The EBV genome in these B-lymphoma cells is frequently an episome. Virus genes associated with latent infection of primary B lymphocytes are expressed. Expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) and the EBNA-3 genes is variable relative to that of EBNA-1, as is characteristic of some naturally infected Burkitt tumor cells. Moreover, the EBV-infected B-lymphoma cells are often partially permissive for early replicative cycle gene expression and virus replication can be induced, in contrast to previously reported in vitro infected B-lymphoma cells. These studies demonstrate that dominant selectable markers can be inserted into the EBV genome, are active in the context of the EBV genome, and can be used to recover recombinant EBV in B-lymphoma cells. This system should be particularly useful for recovering EBV genomes with mutations in essential transforming genes.  相似文献   

3.
Epstein-Barr virus (EBV) recombinants with specifically mutated BCRF1 genes were constructed and compared with wild-type BCRF1 recombinants derived in parallel for the ability to initiate and maintain latent infection and growth transformation in primary human B lymphocytes. A stop codon insertion after codon 116 of the 170-codon BCRF1 open reading frame or deletion of the entire gene had no effect on latent infection, B-lymphocyte proliferation into long-term lymphoblastoid cell lines (LCLs), or virus replication. LCLs infected with the stop codon recombinant were indistinguishable from wild-type recombinant-infected LCLs in tumorigenicity in SCID mice. However, mutant BCRF1 recombinant-infected cells differed from wild-type recombinant-infected cells in their inability to block gamma interferon release in cultures of permissively infected LCLs incubated with autologous human peripheral blood mononuclear cells. This is the first functional assay for BCRF1 expression from the EBV genome. BCRF1 probably plays a key role in modulating the specific and nonspecific host responses to EBV infection.  相似文献   

4.
C Rooney  J G Howe  S H Speck    G Miller 《Journal of virology》1989,63(4):1531-1539
The Epstein-Barr virus (EBV) genes expressed in B lymphocytes immortalized in vitro or in Burkitt's lymphoma (BL) cells infected in vivo have been characterized previously; however, the viral products which are essential for immortalization or for establishment of EBV latency are still not known. To approach this question, we compared the kinetics of expression of EBV nuclear antigens and the two EBV-encoded small RNAs, EBER1 and EBER2, after infection of primary B cells or EBV genome-negative BL cells with either an immortalizing EBV strain (B95-8) or the nonimmortalizing deletion mutant (HR-1). Following infection of primary cells with B95-8 virus, EBV nuclear antigen (EBNA)-2 was expressed first, followed by EBNA-1, -3, and -4 (also called leader protein [LP]) and the two small RNAs. Infection of EBV genome-negative BL cells with the same strain of virus resulted in a similar pattern of gene expression, except that the EBNAs appeared together and more rapidly. EBERs were not apparent in one BL cell line converted by B95-8. The only products detected after infection of primary B lymphocytes with the HR-1 deletion mutant were the EBNA-4 (LP) family and trace amounts of EBER1. Although HR-1 could express neither EBNA-1, EBNA-3, nor EBER2 in primary cells, all these products were expressed rapidly after HR-1 infection of EBV genome-negative BL cell lines. The results indicate that the mutation in HR-1 virus affects immortalization not only through failure to express EBNA-2, a gene which is deleted, but also indirectly by curtailing expression of several other EBV genes whose coding regions are intact in the HR-1 virus and normally expressed during latency. The pattern of latent EBV gene expression after HR-1 infection is dependent on the host cell, perhaps through products specific for the cell cycle or the state of B-cell differentiation.  相似文献   

5.
Recombinant Epstein-Barr viruses (EBV) with a translation termination codon mutation inserted into the nuclear protein 3A (EBNA-3A) or 3C (EBNA-3C) open reading frame were generated by second-site homologous recombination. These mutant viruses were used to infect primary B lymphocytes to assess the requirement of EBNA-3A or -3C for growth transformation. The frequency of obtaining transformants infected with a wild-type EBNA-3A recombinant EBV was 10 to 15%. In contrast, the frequency of obtaining transformants infected with a mutant EBNA-3A recombinant EBV was only 1.4% (9 mutants in 627 transformants analyzed). Transformants infected with mutant EBNA-3A recombinant virus could be obtained only by coinfection with another transformation-defective EBV which provided wild-type EBNA-3A in trans. Cells infected with mutant EBNA-3A recombinant virus lost the EBNA-3A mutation with expansion of the culture. The decreased frequency of recovery of the EBNA-3A mutation, the requirement for transformation-defective EBV coinfection, and the inability to maintain the EBNA-3A mutation indicate that EBNA-3A is essential or critical for lymphocyte growth transformation and that the EBNA-3A mutation has a partial dominant negative effect. Five transformants infected with mutant EBNA-3C recombinant virus EBV were also identified and expanded. All five also required wild-type EBNA-3C in trans. Serial passage of the mutant recombinant virus into primary B lymphocytes resulted in transformants only when wild-type EBNA-3C was provided in trans by coinfection with a transformation-defective EBV carrying a wild-type EBNA-3C gene. A secondary recombinant virus in which the mutated EBNA-3C gene was replaced by wild-type EBNA-3C was able to transform B lymphocytes. Thus, EBNA-3C is also essential or critical for primary B-lymphocyte growth transformation.  相似文献   

6.
These experiments evaluate the role of the Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) in B-lymphocyte growth transformation by using a recombinant EBV molecular genetic approach. Recombinant viruses encoding for a mutant EBNA-LP lacking the carboxy-terminal 45 amino acids were markedly impaired in their ability to transform primary B lymphocytes compared with EBNA-LP wild-type but otherwise isogenic recombinant viruses. This impairment was particularly evident when primary B lymphocytes were infected under conditions of limiting virus dilution. The impairment could be partially corrected by growth of the infected lymphocytes with fibroblast feeder layers or by cocultivation of primary B lymphocytes with relatively highly permissive mutant virus-infected cells. One of the five mutant recombinants recovered by growth of infected cells on fibroblast feeder cultures was a partial revertant which had a normal transforming phenotype. Several lymphoblastoid cell lines infected with the EBNA-LP mutant recombinant viruses had a high percentage of cells with bright cytoplasmic immunoglobulin staining, as is characteristic of cells undergoing plasmacytoid differentiation. Expression of the other EBV latent or lytic proteins and viral replication were not affected by the EBNA-LP mutations. Thus, the EBNA-LP mutant phenotype is not mediated by an effect on expression of another EBV gene. These data are most compatible with the hypothesis that EBNA-LP affects expression of a B-lymphocyte gene which is a mediator of cell growth or differentiation.  相似文献   

7.
Epstein-Barr virus (EBV)-negative Burkitt lymphomas (BLs) can be infected in vitro with prototype EBV strains to study how the virus may affect the phenotype of tumor cells. Studies thus far have concentrated on the use of transforming B95-8 and nontransforming P3HR1 strains. Immunological and phenotypic differences between the sublines infected with these two strains were reported. The majority of these differences, if not all, can be attributed to the lack of EBNA-2 coding sequences in the P3HR1 strain. The recent development of a selectable Akata strain has opened up new possibilities for infecting epithelial and T cells as well. We infected five EBV-negative BL lines with the recombinant Akata virus. Our results indicate that the infected cell lines BL28, Ramos, and DG75 express EBNA-1, EBNA-2, and LMP1, the viral proteins associated with type III latency, and use both YUK and QUK splices. In contrast, two EBV-negative variants of Akata and Mutu when reinfected displayed restricted type I latency and expressed only EBNA-1. All clones of infected Mutu cells used the QUK splice exclusively. The usage of Qp was observed in a majority of Akata clones. Some Akata clones, however, were found to have double promoter usage (Qp and C/Wp) but at 4 months after infection did not express EBNA-2. The results demonstrate differential regulation of EBV latency in BLs with the same recombinant viral strain and suggest that the choice of latency type may be cell dependent. The restricted latency observed for infected Akata and Mutu cells indicates that a BL may opt for type I latency in the absence of immune pressure as well.  相似文献   

8.
The Epstein-Barr virus (EBV) glycoprotein gp110 has substantial amino acid homology to gB of herpes simplex virus but localizes differently within infected cells and is essentially undetectable in virions. To investigate whether gp110, like gB, is essential for EBV infection, a selectable marker was inserted within the gp110 reading frame, BALF4, and the resulting null mutant EBV stain, B95-110HYG, was recovered in lymphoblastoid cell lines (LCLs). While LCLs infected with the parental virus B95-8 expressed the gp110 protein product following productive cycle induction, neither full-length gp110 nor the predicted gp110 truncation product was detectable in B95-110HYG LCLs. Infectious virus could not be recovered from B95-110HYG LCLs unless gp110 was provided in trans. Rescued B95-110HYG virus latently infected and growth transformed primary B lymphocytes. Thus, gp110 is required for the production of transforming virus but not for the maintenance of transformation of primary B lymphocytes by EBV.  相似文献   

9.
Transformation-competent, replication-defective Epstein-Barr virus (EBV) recombinants which are deleted for 18 kbp of DNA encoding the largest EBNA intron and for 58 kbp of DNA between the EBNA1 and LMP1 genes were constructed. These recombinants were made by transfecting three overlapping cosmid-cloned EBV DNA fragments into cells infected with a lytic replication-competent but transformation-defective EBV (P3HR-1 strain) and were identified by clonal transformation of primary B lymphocytes into lymphoblastoid cell lines. One-third of the lymphoblastoid cell lines were infected with recombinants which had both deletions and carried the EBNA2 and EBNA3 genes from the transfected EBV DNA and therefore are composed mostly or entirely from the transfected EBV DNA fragments. The deleted DNA is absent from cells infected with most of these recombinants, as demonstrated by Southern blot and sensitive PCR analyses for eight different sites within the deleted regions. Cell growth and EBNA, LMP, and BZLF1 gene expression in lymphoblastoid cell lines infected with these recombinants are similar to those in cells infected with wild-type EBV recombinants. Together with previous data, these experiments reduce the complexity of the EBV DNA necessary for transformation of primary B lymphocytes to 64 kbp. The approach should be useful for molecular genetic analyses of transforming EBV genes or for the insertion of heterologous fragments into transforming EBV genomes.  相似文献   

10.
An Epstein-Barr virus (EBV) recombinant (MS231) that expresses the first 231 amino acids (aa) of LMP1 and is truncated 155 aa before the carboxyl terminus transformed resting B lymphocytes into lymphoblastoid cell lines (LCLs) only when the infected cells were grown on fibroblast feeder cells (K. M. Kaye et al., J. Virol. 69:675-683, 1995). Higher-titer MS231 virus has now been compared to wild-type (WT) EBV recombinants for the ability to cause resting primary B-lymphocyte transformation. Unexpectedly, MS231 is as potent as WT EBV recombinants in causing infected B lymphocytes to proliferate in culture for up to 5 weeks. When more than one transforming event is initiated in a microwell, the MS231 recombinant supports efficient long-term LCL outgrowth and fibroblast feeder cells are not required. However, with limited virus input, MS231-infected cells differed in their growth from WT virus-infected cells as early as 6 weeks after infection. In contrast to WT virus-infected cells, most MS231-infected cells could not be grown into long-term LCLs. Thus, the LMP1 amino-terminal 231 aa are sufficient for initial growth transformation but the carboxyl-terminal 155 aa are necessary for efficient long-term outgrowth. Despite the absence of the carboxyl-terminal 155 aa, MS231- and WT-transformed LCLs are similar in latent EBV gene expression, in ICAM-1 and CD23 expression, and in NF-kappaB and c-jun N-terminal kinase activation. MS231 recombinant-infected LCLs, however, require 16- to 64-fold higher cell density than WT-infected LCLs for regrowth after limiting dilution. These data indicate that the LMP1 carboxyl-terminal 155 aa are important for growth at lower cell density and appear to reduce dependence on paracrine growth factors.  相似文献   

11.
Epstein-Barr virus recombinants from overlapping cosmid fragments.   总被引:14,自引:12,他引:2       下载免费PDF全文
Five overlapping type 1 Epstein-Barr virus (EBV) DNA fragments constituting a complete replication- and transformation-competent genome were cloned into cosmids and transfected together into P3HR-1 cells, along with a plasmid encoding the Z immediate-early activator of EBV replication. P3HR-1 cells harbor a type 2 EBV which is unable to transform primary B lymphocytes because of a deletion of DNA encoding EBNA LP and EBNA 2, but the P3HR-1 EBV can provide replication functions in trans and can recombine with the transfected cosmids. EBV recombinants which have the type 1 EBNA LP and 2 genes from the transfected EcoRI-A cosmid DNA were selectively and clonally recovered by exploiting the unique ability of the recombinants to transform primary B lymphocytes into lymphoblastoid cell lines. PCR and immunoblot analyses for seven distinguishing markers of the type 1 transfected DNAs identified cell lines infected with EBV recombinants which had incorporated EBV DNA fragments beyond the transformation marker-rescuing EcoRI-A fragment. Approximately 10% of the transforming virus recombinants had markers mapping at 7, 46 to 52, 93 to 100, 108 to 110, 122, and 152 kbp from the 172-kbp transfected genome. These recombinants probably result from recombination among the transfected cosmid-cloned EBV DNA fragments. The one recombinant virus examined in detail by Southern blot analysis has all the polymorphisms characteristic of the transfected type 1 cosmid DNA and none characteristic of the type 2 P3HR-1 EBV DNA. This recombinant was wild type in primary B-lymphocyte infection, growth transformation, and lytic replication. Overall, the type 1 EBNA 3A gene was incorporated into 26% of the transformation marker-rescued recombinants, a frequency which was considerably higher than that observed in previous experiments with two-cosmid EBV DNA cotransfections into P3HR-1 cells (B. Tomkinson and E. Kieff, J. Virol. 66:780-789, 1992). Of the recombinants which had incorporated the marker-rescuing cosmid DNA fragment and the fragment encoding the type 1 EBNA 3A gene, most had incorporated markers from at least two other transfected cosmid DNA fragments, indicating a propensity for multiple homologous recombinations. The frequency of incorporation of the nonselected transfected type 1 EBNA 3C gene, which is near the end of two of the transfected cosmids, was 26% overall, versus 3% in previous experiments using transfections with two EBV DNA cosmids. In contrast, the frequency of incorporation of a 12-kb EBV DNA deletion which was near the end of two of the transfected cosmids was only 13%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Several lines of evidence are compatible with the hypothesis that Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) or leader protein (EBNA-LP) affects expression of the EBV latent infection membrane protein LMP1. We now demonstrate the following. (i) Acute transfection and expression of EBNA-2 under control of simian virus 40 or Moloney murine leukemia virus promoters resulted in increased LMP1 expression in P3HR-1-infected Burkitt's lymphoma cells and the P3HR-1 or Daudi cell line. (ii) Transfection and expression of EBNA-LP alone had no effect on LMP1 expression and did not act synergistically with EBNA-2 to affect LMP1 expression. (iii) LMP1 expression in Daudi and P3HR-1-infected cells was controlled at the mRNA level, and EBNA-2 expression in Daudi cells increased LMP1 mRNA. (iv) No other EBV genes were required for EBNA-2 transactivation of LMP1 since cotransfection of recombinant EBNA-2 expression vectors and genomic LMP1 DNA fragments enhanced LMP1 expression in the EBV-negative B-lymphoma cell lines BJAB, Louckes, and BL30. (v) An EBNA-2-responsive element was found within the -512 to +40 LMP1 DNA since this DNA linked to a chloramphenicol acetyltransferase reporter gene was transactivated by cotransfection with an EBNA-2 expression vector. (vi) The EBV type 2 EBNA-2 transactivated LMP1 as well as the EBV type 1 EBNA-2. (vii) Two deletions within the EBNA-2 gene which rendered EBV transformation incompetent did not transactivate LMP1, whereas a transformation-competent EBNA-2 deletion mutant did transactivate LMP1. LMP1 is a potent effector of B-lymphocyte activation and can act synergistically with EBNA-2 to induce cellular CD23 gene expression. Thus, EBNA-2 transactivation of LMP1 amplifies the biological impact of EBNA-2 and underscores its central role in EBV-induced growth transformation.  相似文献   

13.
14.
Latent Epstein-Barr virus (EBV) infection activates B-lymphocyte proliferation through mechanisms which are partially known. One approach to further delineate these mechanisms is to identify cellular genes whose expression is augmented in cells latently infected with EBV. Since EBV-negative Burkitt's lymphoma cells can be grown in continuous culture and EBV can establish growth-altering latent infection in these cells, some effects of EBV on B-lymphocyte gene expression can be studied by using this in vitro system. Pursuing this latter approach, we have used cDNA cloning and subtractive hybridization to identify a gene whose expression is increased after EBV infection. This gene encodes the cytoskeletal protein vimentin. Latent infection of established EBV-negative Burkitt's lymphoma cell lines with the transforming EBV strain, B95-8, resulted in dramatic increases in vimentin mRNA and protein levels, while infection with the nontransforming P3HR1 strain failed to do so. Vimentin induction was reproduced by the expression of the single EBV gene which encodes the latent infection membrane protein (LMP). An amino-terminal LMP deletion mutant did not induce vimentin. These results are of particular interest in light of the transforming potential of LMP, as demonstrated in rodent fibroblasts, and the interaction between vimentin and LMP observed in immunofluorescent colocalization and cell fractionation studies.  相似文献   

15.
The six latent-cycle nuclear antigens (EBNAs) of Epstein-Barr virus (EBV), whose genes share 5' leader exons and two promoters (Cp and Wp), are differentially expressed by cells of the B lineage. To examine the possibility that EBNA gene expression is regulated through selective use of Cp and Wp, we monitored the activity of promoter-chloramphenicol acetyltransferase (CAT) gene constructs transfected into EBV-positive and EBV-negative B lymphocytes and Burkitt's lymphoma cells. Wp was a much stronger promoter than Cp in EBV genome-negative B-cell lines and was used exclusively in primary B cells. When B cells were infected with transforming EBV, Cp became the stronger promoter. This switch was not observed when B cells were infected with an immortalization-deficient virus, P3HR-1, which lacks the EBNA-2 open reading frame and expresses a mutant leader protein (EBNA-LP). Cp function was transactivated when EBV-negative or P3HR-1-infected B cells were cotransfected with Cp and a 12-kb fragment of DNA (BamHI-WWYH) that spanned the P3HR-1 deletion. This activity was mapped to the EBNA-2 gene within WWYH; constructs expressing EBNA-LP did not induce Cp function, and the deletion of 405 bp from the EBNA-2 open reading frame abolished transactivation. This research demonstrates host cell and EBNA-2 regulation of latent-cycle promoter activity in B lymphocytes, a mechanism with implications for persistence of EBV-infected lymphoid cells in vivo.  相似文献   

16.
J I Cohen  F Wang    E Kieff 《Journal of virology》1991,65(5):2545-2554
Epstein-Barr virus (EBV) nuclear protein 2 (EBNA-2) is essential for B-lymphocyte growth transformation. EBNA-2 transactivates expression of the EBV latent membrane protein (LMP-1) and also transactivates expression of the B-lymphocyte proteins CD21 and CD23. In order to analyze the functional domains of EBNA-2, we constructed 11 linker-insertion and 15 deletion mutations. Each of the mutant EBNA-2 proteins localized to the nucleus, and each was expressed at levels similar to wild-type EBNA-2. Deletion of both EBNA-2 basic domains was required to prevent nuclear localization, indicating that either is sufficient for nuclear translocation. The mutant EBNA-2 genes were assayed for lymphocyte transformation after recombination with the EBNA-2-deleted P3HR-1 EBV genome and for LMP-1 transactivation following transfection into P3HR-1-infected B-lymphoma cells. Cell lines transformed by recombinant EBV carrying EBNA-2 mutations were assayed for growth properties and LMP-1, CD21, and CD23 expression. The mutational analysis indicates that at least four separate EBNA-2 domains are essential for lymphocyte transformation. Two other domains are necessary for the full transforming phenotype. Two deletion and eight linker-insertion mutations did not reduce transforming activity. Mutations which diminish or abolish lymphocyte transformation also diminish or abolish LMP-1 transactivation, respectively. Cells transformed by recombinant EBV carrying EBNA-2 genes with diminished or normal transforming activity all expressed high levels of LMP-1, CD23, and CD21. These findings suggest that transactivation of these viral and cellular genes by EBNA-2 plays a critical role in lymphocyte transformation by EBV. Furthermore, these results indicate that the transformation and transactivation functions of EBNA-2 may not be separable.  相似文献   

17.
Recombinant Epstein-Barr viruses with a stop codon inserted into the nuclear protein 3B (EBNA 3B) open reading frame were generated by second-site homologous recombination. These mutant viruses infected and growth transformed primary B lymphocytes, resulting in the establishment of lymphoblastoid cell lines (LCLs). Polymerase chain reaction analysis and Southern hybridizations with infected cell DNA demonstrated the presence of the mutant EBNA 3B and the absence of wild-type EBNA 3B. Immunoblot analysis of the LCLs with affinity-purified EBNA 3B antibodies confirmed the absence of EBNA 3B cross-reactive protein. Virus was reactivated from two of these infected LCLs and serially passaged through primary B lymphocytes. The newly infected cells contained only the mutant recombinant virus. No difference was noted between mutant and wild-type recombinants, derived in parallel, in latent (other than EBNA 3B) or lytic cycle-infected cell virus protein expression or in the growth of the latently infected transformed cell lines. These data indicate that the EBNA 3B protein is not critical for primary B-lymphocyte infection, growth transformation, or lytic virus infection in vitro.  相似文献   

18.
In the present study, we established an in vitro system representing the Burkitt’s lymphoma (BL)-type Epstein-Barr virus (EBV) infection which is characterized by expression of EBV-determined nuclear antigen 1 (EBNA-1) and absence of EBNA-2 and latent membrane protein 1 (LMP1) expression. EBV-negative cell clones isolated from the EBV-positive BL line Akata were infected with an EBV recombinant carrying a selectable marker, and the following selection culture easily yielded EBV-infected clones. EBV-reinfected clones showed BL-type EBV expression and restored the capacity for growth on soft agar and tumorigenicity in SCID mice that were originally retained in parental EBV-positive Akata cells and lost in EBV-negative subclones. Moreover, it was found that EBV-positive cells were more resistant to apoptosis than were EBV-negative cells. EBV-infected cells expressed the bcl-2 protein, through which cells might become resistant to apoptosis, at a higher level than did uninfected cells. This is the first report that BL-type EBV infection confers apoptosis resistance even in the absence of expression of LMP1 and BHRF1, both of which are known to have an antiapoptotic function. Surprisingly, transfection of the EBNA-1 gene into EBV-negative Akata clones could not restore malignant phenotypes and apoptosis resistance, thus suggesting that EBNA-1 alone was not sufficient for conferring them. Our results suggest that the persistence of EBV in BL cells is required for the cells to be more malignant and apoptosis resistant, which underlines the oncogenic role of EBV in BL genesis.  相似文献   

19.
The receptors for insulin and insulin-like growth factor I (IGF-I) are two closely related integral membrane glycoproteins involved in signalling of cell growth and metabolism. We have used the unique paradigm of pairs of Burkitt lymphoma cell lines (BLO2, BL30, BL41) with or without Epstein-Barr Virus (EBV) infection and cells transfected with EBV-related genes to examine effects of EBV on expression of these receptors at the gene and protein functional level. In BL30 and BL41 cells, EBV infection increased surface insulin binding and total receptor number by 2-and 18-fold, respectively. By contrast, EBV infection decreased total IGF-I receptors by 29 to 87% in all three cell lines. In general, there was a correlation between total receptor concentration and the level of insulin or IGF-I receptor mRNAs, although in one cell line insulin binding increased while receptor mRNA levels decreased slightly, suggesting posttranslational effects. BL41 cells transfected with a vector expressing the EBV latent membrane protein (LMP) exhibited a 2.6- to 3.2-fold increase in insulin receptor expression, whereas cells transfected with EBNA-2 (one of the EBV nuclear antigens) alone exhibited no effect. However, EBNA-2 appears to be required for the EBV effect on insulin receptor expression since cells infected with a mutant virus, P3JHRI, which lacks the EBNA-2 gene failed to show an increase in insulin receptor number. These data indicate that EBV infection of lymphocytes increases expression of insulin receptors while simultaneously decreasing expression of IGF-I receptors. The magnitude and sometimes even the direction of change, depends on host cell factors. A maximal increase in insulin receptors appears to require the coordinate action of several of the EBV proteins including LMP and EBNA-2. © 1993 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号