首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-selectin is a C-type lectin expressed on leukocytes that is involved in both lymphocyte homing to the lymph node and leukocyte extravasation during inflammation. Known L-selectin ligands include sulfated Lewis-type carbohydrates, glycolipids, and proteoglycans. Previously, we have shown that in situ detection of different types of L-selectin ligands is highly dependent on the tissue fixation protocol used. Here we use this knowledge to specifically examine the expression of L-selectin binding proteoglycans in normal mouse tissues. We show that L-selectin binding chondroitin/dermatan sulfate proteoglycans are present in cartilage, whereas L-selectin binding heparan sulfate proteoglycans are present in spleen and kidney. Furthermore, we show that L-selectin only binds a subset of renal heparan sulfates, attached to a collagen type XVIII protein backbone and predominantly present in medullary tubular and vascular basement membranes. As L-selectin does not bind other renal heparan sulfate proteoglycans such as perlecan, agrin, and syndecan-4, and not all collagen type XVIII expressed in the kidney binds L-selectin, this indicates that there is a specific L-selectin binding domain on heparan sulfate glycosaminoglycan chains. Using an in vitro L-selectin binding assay, we studied the contribution of N-sulfation, O-sulfation, C5-epimerization, unsubstituted glucosamine residues, and chain length in L-selectin binding to heparan sulfate/heparin glycosaminoglycan chains. Based on our results and the accepted model of heparan sulfate domain organization, we propose a model for the interaction of L-selectin with heparan sulfate glycosaminoglycan chains. Interestingly, this opens the possibility of active regulation of L-selectin binding to heparan sulfate proteoglycans, e.g. under inflammatory conditions.  相似文献   

2.
Cell surface heparan sulfate proteoglycan (HSPG) from metastatic mouse melanoma cells initiates cell adhesion to the synthetic peptide FN-C/H II, a heparin-binding peptide from the 33-kD A chain-derived fragment of fibronectin. Mouse melanoma cell adhesion to FN-C/H II was sensitive to soluble heparin and pretreatment of mouse melanoma cells with heparitinase. In contrast, cell adhesion to the fibronectin synthetic peptide CS1 is mediated through an alpha 4 beta 1 integrin and was resistant to heparin or heparitinase treatment. Mouse melanoma cell HSPG was metabolically labeled with [35S]sulfate and extracted with detergent. After HPLC-DEAE purification, 35S-HSPG eluted from a dissociative CL-4B column with a Kav approximately 0.45, while 35S-heparan sulfate (HS) chains eluted with a Kav approximately 0.62. The HSPG contained a major 63-kD core protein after heparitinase digestion. Polyclonal antibodies generated against HSPG purified from mouse melanoma cells grown in vivo also identified a 63-kD core protein. This HSPG is an integral plasma membrane component by virtue of its binding to Octyl Sepharose affinity columns and that anti-HSPG antibody staining exhibited a cell surface localization. The HSPG is anchored to the cell surface through phosphatidylinositol (PI) linkages, as evidenced in part by the ability of PI-specific phospholipase C to eliminate binding of the detergent-extracted HSPG to Octyl Sepharose. Furthermore, the mouse melanoma HSPG core protein could be metabolically labeled with 3H-ethanolamine. The involvement of mouse melanoma cell surface HSPG in cell adhesion to fibronectin was also demonstrated by the ability of anti-HSPG antibodies and anti-HSPG IgG Fab monomers to inhibit mouse melanoma cell adhesion to FN-C/H II. 35S-HSPG and 35S-HS bind to FN-C/H II affinity columns and require 0.25 M NaCl for elution. However, heparitinase-treated 125I-labeled HSPG failed to bind FN-C/H II, suggesting that HS, and not HSPG core protein, binds FN-C/H II. These data support the hypothesis that a phosphatidylinositol-anchored HSPG on mouse melanoma cells (MPIHP-63) initiates recognition to FN-C/H II, and implicate PI-associated signal transduction pathways in mediating melanoma cell adhesion to this defined ligand.  相似文献   

3.
The deposition of immune complexes (IC) induces an acute inflammatory response with tissue injury. IC-induced inflammation is mediated by inflammatory cell infiltration, a process highly regulated by expression of multiple adhesion molecules. To assess the role of L-selectin and ICAM-1 in this pathogenetic process, the cutaneous reverse passive Arthus reaction was examined in mice lacking L-selectin (L-selectin(-/-)), ICAM-1 (ICAM-1(-/-)), or both (L-selectin/ICAM-1(-/-)). Edema and hemorrhage, which peaked 4 and 8 h after IC challenge, respectively, were significantly reduced in L-selectin(-/-), ICAM-1(-/-), and L-selectin/ICAM-1(-/-) mice compared with wild-type littermates. In general, edema and hemorrhage were more significantly inhibited in ICAM-1(-/-) mice than in L-selectin(-/-) mice, but were most significantly reduced in L-selectin/ICAM-1(-/-) mice compared with ICAM-1(-/-) or L-selectin(-/-) mice. Decreased edema and hemorrhage correlated with reduced neutrophil and mast cell infiltration in all adhesion molecule-deficient mice, but leukocyte infiltration was most affected in L-selectin/ICAM-1(-/-) mice. Reduced neutrophil and mast cell infiltration was also observed for all mutant mice in the peritoneal Arthus reaction. Furthermore, cutaneous TNF-alpha production was inhibited in each deficient mouse, which paralleled the reductions in cutaneous inflammation. These results indicate that ICAM-1 and L-selectin cooperatively contribute to the cutaneous Arthus reaction by regulating neutrophil and mast cell recruitment and suggest that ICAM-1 and L-selectin are therapeutic targets for human IC-mediated disease.  相似文献   

4.
《The Journal of cell biology》1995,129(4):1155-1164
The leukocyte adhesion molecule L-selectin mediates binding to lymph node high endothelial venules (HEV) and contributes to leukocyte rolling on endothelium at sites of inflammation. Previously, it was shown that truncation of the L-selectin cytoplasmic tail by 11 amino acids abolished binding to lymph node HEV and leukocyte rolling in vivo, but the molecular basis for that observation was not determined. This study examined potential interactions between L-selectin and cytoskeletal proteins. We found that the cytoplasmic domain of L- selectin interacts directly with the cytoplasmic actin-binding protein alpha-actinin and forms a complex with vinculin and possibly talin. Solid phase binding assays using the full-length L-selectin cytoplasmic domain bound to microtiter wells demonstrated direct, specific, and saturable binding of purified alpha-actinin to L-selectin (Kd = 550 nM), but no direct binding of purified talin or vinculin. Interestingly, talin potentiated binding of alpha-actinin to the L- selectin cytoplasmic domain peptide despite the fact that direct binding of talin to L-selectin could not be measured. Vinculin binding to the L-selectin cytoplasmic domain peptide was detectable only in the presence of alpha-actinin. L-selectin coprecipitated with a complex of cytoskeletal proteins including alpha-actinin and vinculin from cells transfected with L-selectin, consistent with the possibility that alpha- actinin binds directly to L-selectin and that vinculin associates by binding to alpha-actinin in vivo to link actin filaments to the L- selectin cytoplasmic domain. In contrast, a deletion mutant of L- selectin lacking the COOH-terminal 11 amino acids of the cytoplasmic domain failed to coprecipitate with alpha-actinin or vinculin. Surprisingly, this mutant L-selectin localized normally to the microvillar projections on the cell surface. These data suggest that the COOH-terminal 11 amino acids of the L-selectin cytoplasmic domain are required for mediating interactions with the actin cytoskeleton via a complex of alpha-actinin and vinculin, but that this portion of the cytoplasmic domain is not necessary for proper localization of L- selectin on the cell surface. Correct L-selectin receptor positioning is therefore insufficient for leukocyte adhesion mediated by L- selectin, suggesting that this adhesion may also require direct interactions with the cytoskeleton.  相似文献   

5.
Interactions between the leukocyte adhesion receptor L-selectin and P-selectin glycoprotein ligand-1 play an important role in regulating the inflammatory response by mediating leukocyte tethering and rolling on adherent leukocytes. In this study, we have examined the effect of post-translational modifications of PSGL-1 including Tyr sulfation and presentation of sialylated and fucosylated O-glycans for L-selectin binding. The functional importance of these modifications was determined by analyzing soluble L-selectin binding and leukocyte rolling on CHO cells expressing various glycoforms of PSGL-1 or mutant PSGL-1 targeted at N-terminal Thr or Tyr residues. Simultaneous expression of core-2 beta1,6-N-acetylglucosaminyltransferase and fucosyltransferase VII was required for optimal L-selectin binding to PSGL-1. Substitution of Thr-57 by Ala but not of Thr-44, strongly decreased L-selectin binding and leukocyte rolling on PSGL-1. Substitution of Tyr by Phe revealed that PSGL-1 Tyr-51 plays a predominant role in mediating L-selectin binding and leukocyte rolling whereas Tyr-48 has a minor role, an observation that contrasts with the pattern seen for the interactions between PSGL-1 and P-selectin where Tyr-48 plays a key role. Molecular modeling analysis of L-selectin and P-selectin interactions with PSGL-1 further supported these observations. Additional experiments showed that core-2 O-glycans attached to Thr-57 were also of critical importance in regulating the velocity and stability of leukocyte rolling. These observations pinpoint the structural characteristics of PSGL-1 that are required for optimal interactions with L-selectin and may be responsible for the specific kinetic and mechanical bond properties of the L-selectin-PSGL-1 adhesion receptor-counterreceptor pair.  相似文献   

6.
Neutrophil recruitment at sites of inflammation is regulated by a series of adhesion and activation events. L-selectin (CD62L) is a leukocyte expressed adhesion protein that is important for neutrophil accumulation and rolling along the vascular endothelium. L-selectin is unique from other adhesion molecules involved in leukocyte transmigration in that its adhesiveness appears to be regulated partly by rapid endoproteolysis. Cleavage of L-selectin occurs within a membrane-proximal region that results in ectodomain shedding and retention of a 6-kDa transmembrane fragment. The cleavage domain of L-selectin has been well characterized through mutational analysis. Whether the cytoplasmic domain of L-selectin also plays a role in regulating shedding is controversial. We have previously shown that the Ca(2+)-sensing protein calmodulin (CaM) constitutively associates with the cytoplasmic domain of L-selectin in transfected cell lines. However, in the absence of mapping and mutational analysis of the CaM-binding region of L-selectin, there remains no direct evidence that this interaction affects shedding. Using synthesized peptides and expressed L-selectin constructs, we demonstrate that CaM binding activity occurs in the membrane-proximal region of the cytoplasmic domain. Mutations engineered in this region that prevent CaM binding increase the proteolytic turnover of L-selectin. Moreover, we demonstrate that CaM binding to the 6-kDa transmembrane fragment is greatly reduced compared with intact L-selectin in neutrophils, suggesting that CaM binding is regulated. These data imply that the cytoplasmic domain of L-selectin can regulate shedding by a mechanism in which bound CaM may operate as a negative effector.  相似文献   

7.
L-Selectin, a leukocyte adhesion molecule, mediates leukocyte rolling on the endothelium and plays a critical role in leukocyte recruitment at inflammatory sites as well as in lymphocyte homing. We have previously shown that L-selectin reactive chondroitin sulfate and heparan sulfate proteoglycans (HSPGs) are both expressed in the distal tubules of the kidney and that versican is one of the chondroitin sulfate-type ligands. In the present study, we characterized the heparan sulfate-type ligand(s) in more detail. The molecular sizes of HSPGs were approximately 600 kDa with core protein sizes of 160 and 180 kDa. Western blotting analysis showed that L-selectin reactive HSPGs were neither agrin nor perlecan, major basement membrane HSPGs in the kidney. The binding to L-selectin was mediated by the lectin domain of L-selectin in a Ca2+-dependent manner and required heparan sulfate side chains, but not sialic acid. To our knowledge, this is the first biochemical characterization of the L-selectin reactive heparan sulfate proteoglycan(s) in the distal tubules of the kidney.  相似文献   

8.
Endostatin is a fragment of the C-terminal domain NC1 of collagen XVIII that inhibits angiogenesis and tumor growth. We report the characterization of a collagen XV endostatin analogue and its parent NC1 domain, obtained by recombinant expression in mammalian cells. Both NC1 domains contain a trimerization domain, a hinge region that is more sensitive to proteolysis in collagen XVIII and the endostatin domain. Unlike endostatin-XVIII, endostatin-XV does not bind zinc or heparin, which is explained by the crystal structure of endostatin-XV. The collagen XV and XVIII fragments inhibited chorioallantoic membrane angiogenesis induced by basic fibroblast growth factor (FGF-2) or vascular endothelial growth factor (VEGF), but there are striking differences depending on which cytokine is used and whether free endostatins or NC1 domains are applied. The collagen XV and XVIII fragments showed a similar binding repertoire for extracellular matrix proteins. Differences were found in the immunohistological localization in vessel walls and basement membrane zones. Together, these data indentify endostatin-XV as an angiogenesis inhibitor, which differs from endostatin-XVIII in several important functional details.  相似文献   

9.
Leukocytes are critical effectors of inflammation and tumor biology. Chemokine-like factors produced by such inflammatory sites are key mediators of tumor growth that activate leukocytic recruitment and tumor infiltration and suppress immune surveillance. Here we report that the endocrine peptide hormone, relaxin, is a regulator of leukocyte biology with properties important in recruitment to sites of inflammation. This study uses the human monocytic cell line THP-1 and normal human peripheral blood mononuclear cells to define a novel role for relaxin in regulation of leukocyte adhesion and migration. Our studies indicate that relaxin promotes adenylate cyclase activation, substrate adhesion, and migratory capacity of mononuclear leukocytes through a relaxin receptor LGR7-dependent mechanism. Relaxin-stimulated cAMP accumulation was observed to occur primarily in non-adherent cells. Relaxin stimulation results in increased substrate adhesion and increased migratory activity of leukocytes. In addition, relaxin-stimulated substrate adhesion resulted in enhanced chemotaxis to monocyte chemoattractant protein-1. These responses in THP-1 and peripheral blood mononuclear cells are relaxin dose-dependent and proportional to cAMP accumulation. We further demonstrate that LGR7 is critical for mediating these biological responses by use of RNA interference lentiviral short hairpin constructs. In summary, we provide evidence that relaxin is a novel leukocyte stimulatory agent with properties affecting adhesion and chemomigration.  相似文献   

10.
Collagen type XV and XVIII are proteoglycans found in the basement membrane zones of endothelial and epithelial cells, and known for their cryptic anti-angiogenic domains named restin and endostatin, respectively. Mutations or deletions of these collagens are associated with eye, muscle and microvessel phenotypes. We now describe a novel role for these collagens, namely a supportive role in leukocyte recruitment. We subjected mice deficient in collagen XV or collagen XVIII, and their compound mutant, as well as the wild-type control mice to bilateral renal ischemia/reperfusion, and evaluated renal function, tubular injury, and neutrophil and macrophage influx at different time points after ischemia/reperfusion. Five days after ischemia/reperfusion, the collagen XV, collagen XVIII and the compound mutant mice showed diminished serum urea levels compared to wild-type mice (all p<0.05). Histology showed reduced tubular damage, and decreased inflammatory cell influx in all mutant mice, which were more pronounced in the compound mutant despite increased expression of MCP-1 and TNF-α in double mutant mice compared to wildtype mice. Both type XV and type XVIII collagen bear glycosaminoglycan side chains and an in vitro approach with recombinant collagen XVIII fragments with variable glycanation indicated a role for these side chains in leukocyte migration. Thus, basement membrane zone collagen/proteoglycan hybrids facilitate leukocyte influx and tubular damage after renal ischemia/reperfusion and might be potential intervention targets for the reduction of inflammation in this condition.  相似文献   

11.
The role of L-selectin (LAM-1) as a regulator of leukocyte adhesion to kidney microvascular glomerular endothelial cells was assessed in vitro by using L-selectin-directed mAb and an L-selectin cDNA-transfected cell line. The initial attachment of neutrophils, monocytes, and lymphocytes to TNF-activated bovine glomerular endothelial cells was significantly inhibited by the anti-LAM1-3 mAb. Under static conditions, anti-LAM1-3 mAb inhibited neutrophil adhesion by 15 +/- 5%, whereas the anti-LAM1-10 mAb, directed against a functionally silent epitope of L-selectin, was without effect. The binding of a CD18 mAb inhibited adhesion by 47 +/- 6%. In contrast, when the assays were carried out under nonstatic conditions or at 4 degrees C, the anti-LAM1-3 mAb generated significantly greater inhibition (approximately 60%). CD18-dependent adhesion was minimal (approximately 10%) under these conditions. TNF-activated glomerular endothelial cells also supported adhesion of a mouse pre-B cell line transfected with L-selectin cDNA, but not wild-type cells. This process was also inhibited by the anti-LAM1-3 mAb. Leukocyte adhesion to unstimulated endothelial cells was independent of L-selectin, but, after TNF stimulation, L-selectin-mediated adhesion was observed at 4 h, with maximal induction persisting for 24 to 48 h. Leukocyte adhesion was not observed if glomerular endothelial cells were exposed to TNF in the presence of RNA or protein synthesis inhibitors. Leukocyte attachment to TNF-activated glomerular endothelial cells was also partially inhibited by treatment of the cells with mannose-6-phosphate or phosphomannan monoester, a soluble complex carbohydrate, or by prior treatment of glomerular endothelial cells with neuraminidase, suggesting that the glomerular endothelial cell ligand shares functional characteristics with those expressed by lymph node and large vessel endothelial cells. These data suggest that TNF activation induced the biosynthesis and surface expression of a ligand(s) for L-selectin on glomerular endothelial cells, which supports neutrophil, monocyte, and lymphocyte attachment under nonstatic conditions.  相似文献   

12.
The leukocytic cell adhesion receptor L-selectin mediates the initial step of the adhesion cascade, the capture and rolling of leukocytes on endothelial cells. This event enables leukocytes to migrate out of the vasculature into surrounding tissues during inflammation and immune surveillance. Distinct domains of L-selectin contribute to proper leukocyte migration. In this review, we discuss the contributions of these domains with respect to L-selectin function: the regulation by serine phosphorylation of the cytoplasmic tail, the role of the transmembrane domain in receptor positioning on the cell surface as well as the N-glycosylation of the extracellular part and the identification of novel binding partners.  相似文献   

13.
Expression of L-selectin on human hematopoietic cells (HC) is associated with a higher proliferative activity and a more rapid engraftment after hematopoietic stem cell transplantation. Two L-selectin ligands are expressed on human HCs, P-selectin glycoprotein ligand-1 (PSGL-1) and a specialized glycoform of CD44 (hematopoietic cell E- and L-selectin ligand, HCELL). Although the structural biochemistry of HCELL and PSGL-1 is well characterized, the relative capacity of these molecules to mediate L-selectin-dependent adhesion has not been explored. In this study, we examined under shear stress conditions L-selectin-dependent leukocyte adhesive interactions mediated by HCELL and PSGL-1, both as naturally expressed on human HC membranes and as purified molecules. By utilizing both Stamper-Woodruff and parallel-plate flow chamber assays, we found that HCELL displayed a 5-fold greater capacity to support L-selectin-dependent leukocyte adherence across a broad range of shear stresses compared with that of PSGL-1. Moreover, L-selectin-mediated leukocyte binding to immunopurified HCELL was consistently >5-fold higher than leukocyte binding to equivalent amounts of PSGL-1. Taken together, these data indicate that HCELL is a more avid L-selectin ligand than PSGL-1 and may be the preferential mediator of L-selectin-dependent adhesive interactions among human HCs in the bone marrow.  相似文献   

14.
Altered leukocyte/cytokine response to inflammation has been observed in human and experimental portal hypertension. The aim of this study was to characterize leukocyte adhesion in portal hypertensive (PPVL) rats stimulated with endotoxin. Leukocyte rolling, adhesion, and migration assessed by intravital microscopy were impaired in mesenteric venules after lipopolysaccharide administration (150 microg/kg) in PPVL vs. sham-operated rats. Analysis of leukocyte L-selectin expression and soluble L-selectin showed that this defective adhesion was related to increased L-selectin shedding. In vitro experiments using isolated leukocytes treated with phorbol 12-myristate 13-acetate showed that monocytes and neutrophils but not lymphocytes were hyperreactive to cell activation, as measured by CD11b overexpression and increased L-selectin shedding in PPVL rats. However, neutrophil emigration in liver sinusoids and in the lung 3 h after endotoxin injection were similar in both groups of animals. Thus the alterations in leukocyte activation and adhesion molecule expression observed in this study may contribute to a better understanding of the higher susceptibility and severity of bacterial infections in cirrhotic patients with portal hypertension.  相似文献   

15.
Leukocyte interactions with vascular endothelium during inflammation depend on cascades of adhesion molecule engagement, particularly during selectin-mediated leukocyte rolling. Leukocyte rolling is also facilitated by members of the integrin and Ig families. Specifically, leukocyte rolling velocities during inflammation are significantly increased in ICAM-1-deficient mice, with ICAM-1 expression required for optimal P- and L-selectin-mediated rolling. Elimination of ICAM-1 expression in L-selectin-deficient mice significantly reduces leukocyte rolling. Whether disrupted leukocyte rolling in L-selectin and ICAM-1 double-deficient (L-selectin/ICAM-1-/-) mice affects leukocyte entry into sites of inflammation in vivo was assessed in the current study by using experimental models of inflammation; thioglycollate-induced peritonitis, chemokine-induced neutrophil migration to the skin, delayed-type hypersensitivity responses, rejection of allogeneic skin grafts, and septic shock. In many cases, the loss of both L-selectin and ICAM-1 expression dramatically reduced leukocyte migration into sites of inflammation beyond what was observed with loss of either receptor alone. In fact, the effects from loss of both L-selectin and ICAM-1 effectively eliminated multiple chronic inflammatory responses in L-selectin/ICAM-1-/- mice. By contrast, the combined loss of L-selectin and ICAM-1 expression had minimal effects on the generation of Ag-specific T cell responses or humoral immunity. Thus, members of the selectin and Ig families function synergistically to mediate optimal leukocyte rolling and entry into tissues, which is essential for the generation of effective inflammatory responses in vivo.  相似文献   

16.
The leukocyte adhesion molecule L-selectin, which mediates the initial steps of leukocyte attachment to vascular endothelium, is intensely glycosylated. Different glycoforms of L-selectin are expressed on different leukocyte subsets and differences in L-selectin glycosylation appear to be correlated with the leukocyte's ability to attach to different endothelial targets. In the present study we addressed the question whether glycosylation of L-selectin influences L-selectin-ligand interactions. To obtain different glycoforms of L-selectin, recombinant proteins were expressed both in the baby hamster kidney (BHK) cell line and in the human myelogenous cell line K562, resulting in sL-sel[BHK] or sL-sel[K562], respectively. The glycosylation characteristics of the purified proteins were determined. The most striking differences in glycosylation were seen in the terminal sialylation. Each of the two proteins carried sialic acids in the alpha 2-3 position, while alpha 2-6-bound sialic acids were found exclusively on sL-sel[K562]. To investigate their adhesive properties, both recombinant sL-selectins were used in cell adhesion assays and interactions with the ligands present on various hematopoietic cell lines or activated human cardiac microvascular endothelial cells were examined. The binding capacity of sL-sel[K562] was about 1.6 fold higher compared to sL-sel[BHK] under static as well as under flow conditions. These findings indicate that the terminal sialylation pattern of L-selectin modulates its binding characteristics.  相似文献   

17.
This communication is concerned with the binding specficityof the leukocyte-adhesion molecule L-selectin (leukocyte homingreceptor) towards structurally defined sulphated oligosaccharidesof the blood group Lea and Lex series, and of the glycolsaminoglycanseries heparin, chondroitin sulphate and keratan sulphate. Therecombinant soluble form of the rat L-selectin (L-selectin-IgGFc chimera) investigated here was shown previously to bind tolipid-linked oligosaccharides 3-O, 4-O and 6-O sulphated atgalactose, such as sulphatides and a mixture of 3-sulphatedLea/Lex type tetrasaccharides isolated from ovarian cystadenoma,as well as to the HNK-1 glycolipid with 3-O sulphated glucuronicacid. In the present study, the L-selectin investigated in bothchromatogram binding and plastic microwell binding experimentsusing neoglycolipids was found to bind to the individual 3-sulphatedLea and Lex sequences (penta-, tetra- and trisaccharides), andwith somewhat lower intensities to their non-fucosylated analogues.Glycosaminoglycan disaccharides of keratan sulphate, heparinand chondroitin sulphate types were also bound by L-selectinin one or both assay systems, leading to the conclusion thatclustered glycosaminoglycan oligosaccharides with 6-O sulphationof N-acetylgalactctosamine, N-acetylglucosamine or glucosamine,4-O sulphation of N-acetylgalactosamine, 2-O sulphation of uronicacid, N-sulphation of glucosamine and, to a lesser extent, thenon-sulphated uronic acid-contahing disaccharides, can supportL-selectin adhesion. As inflammatory chemokines (short-rangestimulators of lymphocyte migration which trigger integrin activation)are known to bind to endothelial glycosaminoglycans, we proposethat the binding of the lymphocyte membrane L-selectin to endothelialglycosaminoglycans may provide a link between the selectin-mediatedand integrin-mediated adhesion systems in leukocyte extravasationcascades. The posibility is also raised that lymphocyte L-selectininteractions with glycosaminoglycans may contribute to pathologiesof glycosaminoglycan-rich tissues, e.g. cartilage loss in rheumatoidarthritis and inflammatory lesions of the cornea. glycosaminoglycans leukocyte adhesion cascades neoglycolipids oligosaccharide presentation sulphated oligosaccharides  相似文献   

18.
Cocaine treatment of mice with viral myocarditis significantly increases neutrophil infiltration into the myocardium and exacerbates the inflammatory response. The mechanisms of these effects are unknown; however, it may be that cocaine increases circulating catecholamines and consequently increases inflammatory cell adhesion to the coronary endothelium. Here, we examined the hypothesis that cocaine enhances inflammatory cell infiltration via catecholamine-induced upregulation of cell adhesion molecule (CAM) expression in adult BALB/c mouse hearts. Intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), endothelial leukocyte adhesion molecule-1 (E-selectin), and leukocyte adhesion molecule-1 (L-selectin) were detected by gene array analysis, RT-PCR, Western blotting, and immunohistochemical staining. CAMs were significantly upregulated in cocaine-treated mouse hearts. beta-Adrenergic stimulation with epinephrine also upregulated CAM expression, confirming the effects obtained with cocaine. Beta-adrenergic blockade with propranolol inhibited epinephrine-induced CAM expression. In hearts infused with polymorphonuclear neutrophils (PMN), an increased adhesion of PMN to the coronary endothelium was observed in cocaine-treated and epinephrine-treated mouse hearts compared with control hearts. Blocking antibodies against ICAM-1, E-selectin, and L-selectin significantly inhibited epinephrine-enhanced PMN adhesion, whereas anti-VCAM-1 had lesser effects. Our findings suggest that cocaine-induced neutrophil infiltration is mediated by beta-adrenergic stimulation through upregulation of CAM expression, which enhances PMN adhesion. Conversely, beta-adrenergic blockade with propranolol inhibits the effects of cocaine and epinephrine on CAM expression and decreases PMN adhesion to the coronary endothelium. These observations may be of significance for the development of preventative and therapeutic approaches to patients with cocaine- or catecholamine-induced myocarditis.  相似文献   

19.
Previously we reported that type V collagen synthesized by Schwann cells inhibits the outgrowth of axons from rat embryo dorsal root ganglion neurons but promotes Schwann cell migration (Chernousov, M. A., Stahl, R. C., and Carey, D. J. (2001) J. Neurosci. 21, 6125-6135). Analysis of Schwann cell adhesion and spreading on dishes coated with various type V collagen domains revealed that Schwann cells adhered effectively only to the non-collagenous N-terminal domain (NTD) of the alpha4(V) collagen chain. Schwann cell adhesion to alpha4(V)-NTD induced actin cytoskeleton assembly, tyrosine phosphorylation, and activation of the Erk1/Erk2 protein kinases. Adhesion to alpha4(V)-NTD is cell type-specific because rat fibroblasts failed to adhere to dishes coated with this polypeptide. Schwann cell adhesion and spreading on alpha4(V)-NTD was strongly inhibited by soluble heparin (IC(50) approximately 30 ng/ml) but not by chondroitin sulfate. Analysis of the heparin binding activities of a series of recombinant alpha4(V)-NTD fragments and deletion mutants identified a highly basic region (not present in other type V collagen NTD) as the site responsible for high affinity heparin binding. Schwann cells adhered poorly to dishes coated with alpha4(V)-NTD that lacked the heparin binding site and failed to spread or assemble organized actin-cytoskeletal structures. Soluble alpha4(V)-NTD polypeptide that contained the heparin binding site inhibited spreading of Schwann cells on dishes coated with alpha4(V)-NTD. Affinity chromatography of Schwann cell detergent extracts on a column of immobilized alpha4(V)-NTD resulted in the isolation of syndecan-3, a transmembrane heparan sulfate proteoglycan. Together, these results suggest that Schwann cells bind to collagen type V via syndecan-3-dependent binding to a novel high affinity heparin binding site in the alpha4(V)-NTD.  相似文献   

20.
Selectins play a major role in the inflammatory reaction by initiating neutrophil attachment to activated vascular endothelium. Some heparin preparations can interact with L- and P-selectin; however, the determinants required for inhibiting selectin-mediated cell adhesion have not yet been characterized. We now report that carboxyl-reduced and sulfated heparin (prepared by chemical modifications of porcine intestinal mucosal heparin leading to the replacement of carboxylates by O-sulfate groups) and trestatin A sulfate (obtained by sulfation of trestatin A, a non-uronic pseudo-nonasaccharide extracted from Streptomyces dimorphogenes) exhibit strong anti-P-selectin and anti-L-selectin activity while lacking antithrombin-mediated anticoagulant activity. In vitro experiments revealed that both compounds inhibited P-selectin- and L-selectin-mediated cell adhesion under laminar flow conditions. Moreover, carboxyl-reduced and sulfated heparin and trestatin A sulfate were also active in vivo, as assessed by experiments showing 1) that microinfusion of trestatin A sulfate reduced by 96% leukocyte rolling along rat mesenteric postcapillary venules and 2) that both compounds inhibited (by 58-81%) neutrophil migration into thioglycollate-inflamed peritoneum of BALB/c mice. These results indicate that nonanticoagulant sulfated saccharides targeted at P-selectin and L-selectin may have therapeutic potential in inflammatory disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号