首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of alpha-synuclein aggregates is proposed to be a crucial event in the pathogenesis of Parkinson's disease. Large soluble oligomeric species are observed as probable intermediates during fibril formation and these, or related aggregates, may constitute the toxic element that triggers neurodegeneration. Unfortunately, there is a paucity of information regarding the structure and composition of these oligomers. Here, the morphology and the conformational characteristics of the oligomers and filaments are investigated by a combined atomic force microscopy (AFM) and Raman microscopic approach on a common mica surface. AFM showed that in vitro early stage oligomers were globular with variable heights, while prolonged incubation caused the oligomers to become elongated as protofilaments. The height of the subsequently formed alpha-synuclein filaments was similar to that of the protofilaments. Analysis of the Raman amide I band profiles of the different alpha-synuclein oligomers establishes that the spheroidal oligomers contain a significant amount of alpha-helical secondary structure (47%), which decreases to about 37% in protofilaments. At the same time, when protofilaments form, beta-sheet structure increases to about 54% from the approximately 29% observed in spheroidal oligomers. Upon filament formation, the major conformation is beta-sheet (66%), confirmed by narrowing of the amide I band and the profile maximum shifting to 1667 cm(-1). The accumulation of spheroidal oligomers of increasing size but unchanged vibrational spectra during the fibrillization process suggests that a cooperative conformational change may contribute to the kinetic control of fibrillization.  相似文献   

2.
Alpha-synuclein is the major component of the filamentous inclusions that constitute defining characteristics of Parkinson's disease and other alpha-synucleinopathies. Here we have tested 79 compounds belonging to 12 different chemical classes for their ability to inhibit the assembly of alpha-synuclein into filaments in vitro. Several polyphenols, phenothiazines, porphyrins, polyene macrolides, and Congo red and its derivatives, BSB and FSB, inhibited alpha-synuclein filament assembly with IC(50) values in the low micromolar range. Many compounds that inhibited alpha-synuclein assembly were also found to inhibit the formation of Abeta and tau filaments. Biochemical analysis revealed the formation of soluble oligomeric alpha-synuclein in the presence of inhibitory compounds, suggesting that this may be the mechanism by which filament formation is inhibited. Unlike alpha-synuclein filaments and protofibrils, these soluble oligomeric species did not reduce the viability of SH-SY5Y cells. These findings suggest that the soluble oligomers formed in the presence of inhibitory compounds may not be toxic to nerve cells and that these compounds may therefore have therapeutic potential for alpha-synucleinopathies and other brain amyloidoses.  相似文献   

3.
Protein conformational changes that result in misfolding, aggregation and amyloid fibril formation are a common feature of many neurodegenerative disorders. Studies with beta-amyloid (Abeta), alpha-synuclein and other amyloid-forming proteins indicate that the assembly of misfolded protein conformers into fibrils is a complex process that may involve the population of metastable spherical and/or annular oligomeric assemblies. Here, we show by atomic force microscopy that a mutant huntingtin fragment with an expanded polyglutamine repeat forms spherical and annular oligomeric structures reminiscent of those formed by Abeta and alpha-synuclein. Notably, the molecular chaperones Hsp70 and Hsp40, which are protective in animal models of neurodegeneration, modulate polyglutamine aggregation reactions by partitioning monomeric conformations and disfavoring the accretion of spherical and annular oligomers.  相似文献   

4.
Two mutations in the alpha-synuclein gene (A30P and A53T) have been linked to autosomal dominant early-onset Parkinson's disease (PD). Both mutations promote the formation of transient protofibrils (prefibrillar oligomers), suggesting that protofibrils are linked to cytotoxicity. In this work, the effect of these mutations on the structure of alpha-synuclein oligomers was investigated using electron microscopy and digital image processing. The PD-linked mutations (A30P and A53T) were observed to affect both the morphology and the size distribution of alpha-synuclein protofibrils (measured by analytical ultracentrifugation and scanning transmission electron microscopy). The A30P variant was observed to promote the formation of annular, pore-like protofibrils, whereas A53T promotes formation of annular and tubular protofibrillar structures. Wild-type alpha-synuclein also formed annular protofibrils, but only after extended incubation. The formation of pore-like oligomeric structures may explain the membrane permeabilization activity of alpha-synuclein protofibrils. These structures may contribute to the pathogenesis of PD.  相似文献   

5.
Filamentous inclusions of alpha-synuclein protein are hallmarks of neurodegenerative diseases collectively known as synucleinopathies. Previous studies have shown that exposure to oxidative and nitrative species stabilizes alpha-synuclein filaments in vitro, and this stabilization may be due to dityrosine cross-linking. To test this hypothesis, we mutated tyrosine residues to phenylalanine and generated recombinant wild type and mutant alpha-synuclein proteins. alpha-Synuclein proteins lacking some or all tyrosine residues form fibrils to the same extent as the wild type protein. Tyrosine residues are not required for protein cross-linking or filament stabilization resulting from transition metal-mediated oxidation, because higher Mr SDS-resistant oligomers and filaments stable to chaotropic agents are detected using all Tyr --> Phe alpha-synuclein mutants. By contrast, cross-linking resulting from exposure to nitrating agents required the presence of one or more tyrosine residues. Furthermore, tyrosine cross-linking is involved in filament stabilization, because nitrating agent-exposed assembled wild type, but not mutant alpha-synuclein lacking all tyrosine residues, was stable to chaotropic treatment. In addition, the formation of stable alpha-synuclein inclusions in intact cells after exposure to oxidizing and nitrating species requires tyrosine residues. These findings demonstrate that nitrative and/or oxidative stress results in distinct mechanisms of alpha-synuclein protein modifications that can influence the formation of stable alpha-synuclein fibrils.  相似文献   

6.
Parkinson's disease involves the aggregation of alpha-synuclein to form fibrils, which are the major constituent of intracellular protein inclusions (Lewy bodies and Lewy neurites) in dopaminergic neurons of the substantia nigra. Occupational exposure to specific metals, especially manganese, copper, lead, iron, mercury, zinc, aluminum, appears to be a risk factor for Parkinson's disease based on epidemiological studies. Elevated levels of several of these metals have also been reported in the substantia nigra of Parkinson's disease subjects. We examined the effect of various metals on the kinetics of fibrillation of recombinant alpha-synuclein and in inducing conformational changes, as monitored by biophysical techniques. Several di- and trivalent metal ions caused significant accelerations in the rate of alpha-synuclein fibril formation. Aluminum was the most effective, along with copper(II), iron(III), cobalt(III), and manganese(II). The effectiveness correlated with increasing ion charge density. A correlation was noted between efficiency in stimulating fibrillation and inducing a conformational change, ascribed to formation of a partially folded intermediate. The potential for ligand bridging by polyvalent metal ions is proposed to be an important factor in the metal-induced conformational changes of alpha-synuclein. The results indicate that low concentrations of some metals can directly induce alpha-synuclein fibril formation.  相似文献   

7.
Oxidative stress is implicated in a number of neuro-degenerative diseases and is associated with the selective loss of dopaminergic neurons of the substantia nigra in Parkinson's disease. The role of alpha-synuclein as a potential target of intracellular oxidants has been demonstrated by the identification of posttranslational modifications of synuclein within intracellular aggregates that accumulate in Parkinson's disease brains, as well as the ability of a number of oxidative insults to induce synuclein oligomerization. The relationship between these relatively small soluble oligomers, potentially neurotoxic synuclein protofibrils, and synuclein filaments remains unclear. We have found that metal-catalyzed oxidation of alpha-synuclein inhibited formation of synuclein filaments with a concomitant accumulation of beta sheet-rich oligomers that may represent synuclein protofibrils. Similar results with a number of oxidative and enzymatic treatments suggest that the covalent association of synuclein into higher molecular mass oligomers/protofibrils represents an alternate pathway from filament formation and renders synuclein less prone to proteasomal degradation.  相似文献   

8.
ABSTRACT: BACKGROUND: Fibrillar amyloid-like deposits and co-deposits of tau and alpha-synuclein are found in several common neurodegenerative diseases. Recent evidence indicates that small oligomers are the most relevant toxic aggregate species. While tau fibril formation is well-characterized, factors influencing tau oligomerization and molecular interactions of tau and alpha-synuclein are not well understood. RESULTS: We used a novel approach applying confocal single-particle fluorescence to investigate the influence of tau phosphorylation and metal ions on tau oligomer formation and its coaggregation with alpha-synuclein at the level of individual oligomers. We show that Al3+ at physiologically relevant concentrations and tau phosphorylation by GSK-3beta exert synergistic effects on the formation of a distinct SDS-resistant tau oligomer species even at nanomolar protein concentration. Moreover, tau phosphorylation and Al3+ as well as Fe3+ enhanced both formation of mixed oligomers and recruitment of alpha-synuclein in pre-formed tau oligomers. CONCLUSIONS: Our findings provide a new perspective on interactions of tau phosphorylation, metal ions, and the formation of potentially toxic oligomer species, and elucidate molecular crosstalks between different aggregation pathways involved in neurodegeneration.  相似文献   

9.
BACKGROUND AND AIMS: Smooth muscle myosin monomers self-assemble in solution to form filaments. Phosphorylation of the 20-kD regulatory myosin light chain (MLC20) enhances filament formation. It is not known whether the phosphorylated and non-phosphorylated filaments possess the same structural integrity. METHODS: We purified myosin from bovine trachealis to form filaments, in ATP-containing zero-calcium solution during a slow dialysis that gradually reduced the ionic strength. Sufficient myosin light chain kinase and phosphatase, as well as calmodulin, were retained after the myosin purification and this enabled phosphorylation of MLC20 within 20-40s after addition of calcium to the filament suspension. The phosphorylated and non-phosphorylated filaments were then partially disassembled by ultrasonification. The extent of filament disintegration was visualized and quantified by atomic force microscopy. RESULTS: MLC20 phosphorylation reduced the diameter of the filaments and rendered the filaments more resistant to ultrasonic agitation. Electron microscopy revealed a similar reduction in filament diameter in intact smooth muscle when the cells were activated. CONCLUSION: Modification of the structural and physical properties of myosin filaments by MLC20 phosphorylation may be a key regulation step in smooth muscle where formation and dissolution of the filaments are required in the cells' adaptation to different cell length.  相似文献   

10.
The pathway of filament assembly from the neuronal intermediate filament α-intermexin was investigated. Optimal assembly occurred in solutions of pH 6.5 to 7 and moderate ionic strength at 37°C. Short filaments formed upon dialysis at 24°C, which elongated further when incubated at 37°C. Soluble forms of α-internexin were characterized by analytical ultracentrifugation and electron microscopy. In 10 mM Tris, pH 8, conditions that favor formation of tetramers and other small oligomers for other intermediate filament proteins, α-internexin formed 10.5 S particles, apparently unit-length half-filaments in the form of rods 10.6 nm in diameter and 68 nm long. Dialysis vs the same buffer with added 10 mM NaCl yielded 16 S rods, probably unit-length filaments, of the same length but 13.0 nm in diameter. At 50 mM NaCl, rods about 13 nm in diameter and heterogeneous in length were observed in electron micrographs, apparently formed from longitudinal annealing of unit-length rods. The results favor a model of assembly in which coiled coil dimers aggregate laterally to form first “unit-length half-filaments” (Herrmann, H., and Aebi, U. (1998)Curr. Opin. Struct. Biol.8, 177–185) and then “unit-length filaments,” which subsequently elongate by annealing.  相似文献   

11.
alpha-Synuclein is a protein normally involved in presynaptic vesicle homeostasis. It participates in the development of Parkinson's disease, in which the nerve cell lesions, Lewy bodies, accumulate alpha-synuclein filaments. The synaptic neurotransmitter release is primarily dependent on Ca(2+)-regulated processes. A microdialysis technique was applied showing that alpha-synuclein binds Ca(2+) with an IC(50) of about 2-300 microm and in a reaction uninhibited by a 50-fold excess of Mg(2+). The Ca(2+)-binding site consists of a novel C-terminally localized acidic 32-amino acid domain also present in the homologue beta-synuclein, as shown by Ca(2+) binding to truncated recombinant and synthetic alpha-synuclein peptides. Ca(2+) binding affects the functional properties of alpha-synuclein. First, the ligand binding of (125)I-labeled bovine microtubule-associated protein 1A is stimulated by Ca(2+) ions in the 1-500 microm range and is dependent on an intact Ca(2+) binding site in alpha-synuclein. Second, the Ca(2+) binding stimulates the proportion of (125)I-alpha-synuclein-containing oligomers. This suggests that Ca(2+) ions may both participate in normal alpha-synuclein functions in the nerve terminal and exercise pathological effects involved in the formation of Lewy bodies.  相似文献   

12.
The active site metal in horse liver alcohol dehydrogenase has been studied by metal-directed affinity labeling of the native zinc(II) enzyme and that substituted with cobalt(II) or cadmium(II). Reversible binding of bromoimidazolyl propionic acid to the cobalt enzyme blueshifts the visible absorption band originating from the catalytic cobalt atom at 655 to 630 nm. Binding of imidazole to the cobalt(II) enzyme redshifts the 655 nm band to 667 nm. Addition of bromoimidazolyl propionic acid blueshifts this 667 nm band back to 630 nm. This proves direct binding of the label to the active site metal in competition with imidazole. The affinity of the label for the reversible binding site in the three enzymes follows the order Zn ? Cd ? Co. After reversible complex formation, bromoimidazolyl propionic acid alkylates cysteine-46, one of the protein ligands to the active site metal. The nucleophilic reactivity of this metal-mercaptide bond in each reversible complex follows the order Co ? Zn ? Cd.  相似文献   

13.
Most polymers which comprise biological filaments assemble by two mechanisms: nucleation and elongation or a sequential, stepwise process involving a hierarchy of intermediate species. We report the application of atomic force microscopy (AFM) to the study of the early events in the sequential or stepwise mode of assembly of a macromolecular filament. Collagen monomers were assembled in vitro and the early structural intermediates of the assembly process were examined by AFM and correlated with turbidimetric alterations in the assembly mixture. The assembly of collagen involved a sequence of distinctive filamentous species which increased in both diameter and length over the time course of assembly. The first discrete population of collagen oligomers were 1-2 nm in diameter (300-500 nm in length); at later time points, filaments approximately 2-6 nm in diameter (> 10 microns in length) many with a conspicuous approximately 67-nm axial period were observed. Occasional mature collagen fibrils with a approximately 67-nm axial repeat were found late in the course of assembly. Our results are consistent with initial end-to-end axial association of monomers to form oligomers followed by lateral association into higher-order filaments. On this basis, there appears to be at least two distinctive types of structural interactions (axial and lateral) which are operative at different levels in the assembly hierarchy of collagen.  相似文献   

14.
The size and distribution of microvoids in Bombyx mori silk were examined by transmission electron microscopy of silver sulphide 'stained' filaments. Silver sulphide deposited in voids and accessible regions of molecular structure appears as dense particles in thin transverse and longitudinal sections of silk filaments. Small particles (about 8 nm or less in diameter) occur around or adjacent to the periphery of the filaments. Larger particles (around 10-15 nm in diameter) occur in the form of dendritic arrays in the core region of the filaments. The leading edges of the dendritic arrays are oriented towards the fibre periphery. The particles (microvoids) appear to be either spherical or rod-like in shape and are aligned parallel to the long axis of the filament. A skin/core structure is proposed.  相似文献   

15.
Neurodegenerative disorders share common features comprising aggregation of misfolded proteins, failure of the ubiquitin-proteasome system, and increased levels of metal ions in the brain. Protein aggregates within affected cells often contain ubiquitin, however no report has focused on the aggregation propensity of this protein. Recently it was shown that copper, differently from zinc, nickel, aluminum, or cadmium, compromises ubiquitin stability and binds to the N-terminus with 0.1 micromolar affinity. This paper addresses the role of copper upon ubiquitin aggregation. In water, incubation with Cu(II) leads to formation of spherical particles that can progress from dimers to larger conglomerates. These spherical oligomers are SDS-resistant and are destroyed upon Cu(II) chelation or reduction to Cu(I). In water/trifluoroethanol (80∶20, v/v), a mimic of the local decrease in dielectric constant experienced in proximity to a membrane surface, ubiquitin incubation with Cu(II) causes time-dependent changes in circular dichroism and Fourier-transform infrared spectra, indicative of increasing β-sheet content. Analysis by atomic force and transmission electron microscopy reveals, in the given order, formation of spherical particles consistent with the size of early oligomers detected by gel electrophoresis, clustering of these particles in straight and curved chains, formation of ring structures, growth of trigonal branches from the rings, coalescence of the trigonal branched structures in a network. Notably, none of these ubiquitin aggregates was positive to tests for amyloid and Cu(II) chelation or reduction produced aggregate disassembly. The early formed Cu(II)-stabilized spherical oligomers, when reconstituted in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes and in POPC planar bilayers, form annular and pore-like structures, respectively, which are common to several neurodegenerative disorders including Parkinson''s, Alzheimer''s, amyotrophic lateral sclerosis, and prion diseases, and have been proposed to be the primary toxic species. Susceptibility to aggregation of ubiquitin, as it emerges from the present study, may represent a potential risk factor for disease onset or progression while cells attempt to tag and process toxic substrates.  相似文献   

16.
When purified muscle actin was mixed with microtubule-associated proteins (MAPs) prepared from brain microtubules assembled in vitro, actin filaments were organized into discrete bundles, 26 nm in diameter. MAP-2 was the principal protein necessary for the formation of the bundles. Analysis of MAP-actin bundle formation by sedimentation and electrophoresis revealed the bundles to be composed of approximately 20% MAP-2 and 80% actin by weight. Transverse striations were observed to occur at 28-nm intervals along negatively stained MAP- actin bundles, and short projections, approximately 12 nm long and spaced at 28-nm intervals, were resolved by high-resolution metal shadowing. The formation of MAP-actin bundles was inhibited by millimolar concentrations of ATP, AMP-PCP (beta, gamma-methylene- adenosine triphosphate), and pyrophosphate but not by AMP, ADP, or GTP. The addition of ATP to a solution containing MAP-actin bundles resulted in the dissociation of the bundles into individual actin filaments; discrete particles, presumably MAP-2, were periodically attached along the splayed filaments. These results demonstrate that MAPs can bind to actin filaments and can induce the reversible formation of actin filament bundles in vitro.  相似文献   

17.
Intermediate filaments are a large and structurally diverse group of cellular filaments that are classified into five different groups. They are referred to as intermediate filaments (IFs) because they are intermediate in diameter between the two other cytoskeletal filament systems that is filamentous actin and microtubules. The basic building block of IFs is a predominantly alpha-helical rod with variable length globular N- and C-terminal domains. On the ultra-structural level there are two major differences between IFs and microtubules or actin filaments: IFs are non-polar, and they do not exhibit large globular domains. IF molecules associate via a coiled-coil interaction into dimers and higher oligomers. Structural investigations into the molecular building plan of IFs have been performed with a variety of biophysical and imaging methods such as negative staining and metal-shadowing electron microscopy (EM), mass determination by scanning transmission EM, X-ray crystallography on fragments of the IF stalk and low-angle X-ray scattering. The actual packing of IF dimers into a long filament varies between the different families. Typically the dimers form so called protofibrils that further assemble into a filament. Here we introduce new cryo-imaging methods for structural investigations of IFs in vitro and in vivo, i.e., cryo-electron microscopy and cryo-electron tomography, as well as associated techniques such as the preparation and handling of vitrified sections of cellular specimens.  相似文献   

18.
Myosin thick filaments have been shown tobe structurally labile in intact smooth muscles. Although the mechanismof thick filament assembly/disassembly for purified myosins in solution has been well described, regulation of thick filament formation inintact muscle is still poorly understood. The present study investigates the effect of resting calcium level on thick filament maintenance in intact airway smooth muscle and on thick filament formation during activation. Cross-sectional density of the thick filaments measured electron microscopically showed that the density increased substantially (144%) when the muscle was activated. Theabundance of filamentous myosins in relaxed muscle was calcium sensitive; in the absence of calcium (with EGTA), the filament densitydeceased by 35%. Length oscillation imposed on the muscle underzero-calcium conditions produced no further reduction in the density.Isometric force and filament density recovered fully after reincubationof the muscle in normal physiological saline. The results suggest thatin airway smooth muscle, filamentous myosins exist in equilibrium withmonomeric myosins; muscle activation favors filament formation, and theresting calcium level is crucial for preservation of the filaments inthe relaxed state.

  相似文献   

19.
Lethocerus indirect flight muscle has two isoforms of troponin C, TnC-F1 and F2, which are unusual in having only a single C-terminal calcium binding site (site IV, isoform F1) or one C-terminal and one N-terminal site (sites IV and II, isoform F2). We show here that thin filaments assembled from rabbit actin and Lethocerus tropomyosin (Tm) and troponin (Tn) regulate the binding of rabbit myosin to rabbit actin in much the same way as the mammalian regulatory proteins. The removal of calcium reduces the rate constant for S1 binding to regulated actin about threefold, independent of which TmTn is used. This is consistent with calcium removal causing the TmTn to occupy the B or blocked state to about 70% of the total. The mid point pCa for the switch differed for TnC-F1 and F2 (pCa 6.9 and 6.0, respectively) consistent with the reported calcium affinities for the two TnCs. Equilibrium titration of S1 binding to regulated actin filaments confirms calcium regulated binding of S1 to actin and shows that in the absence of calcium the three actin filaments (TnC-F1, TnC-F2 and mammalian control) are almost indistinguishable in terms of occupancy of the B and C states of the filament. In the presence of calcium TnC-F2 is very similar to the control with approximately 80% of the filament in the C-state and 10-15% in the fully on M-State while TnC-F1 has almost 50% in each of the C and M states. This higher occupancy of the M-state for TnC-F1, which occurs above pCa 6.9, is consistent with this isoform being involved in the calcium activation of stretch activation. However, it leaves unanswered how a C-terminal calcium binding site of TnC can activate the thin filament.  相似文献   

20.
Amyloid-β(1-42) (Aβ) is believed to play a crucial role in the ethiopathogenesis of Alzheimer's Disease (AD). In particular, its interactions with biologically relevant metal ions may lead to the formation of highly neurotoxic complexes. Here we describe the species that are formed upon reacting Aβ with several biometals, namely copper, zinc, iron, and with non-physiological aluminum to assess whether different metal ions are able to differently drive Aβ aggregation. The nature of the resulting Aβ-metal complexes and of the respective aggregates was ascertained through a number of biophysical techniques, including electrospray ionization mass spectrometry, dynamic light scattering, fluorescence, transmission electron microscopy and by the use of conformation-sensitive antibodies (OC, αAPF). Metal binding to Aβ is shown to confer highly different chemical properties to the resulting complexes; accordingly, their overall aggregation behaviour was deeply modified. Both aluminum(III) and iron(III) ions were found to induce peculiar aggregation properties, ultimately leading to the formation of annular protofibrils and of fibrillar oligomers. Notably, only Aβ-aluminum was characterized by the presence of a relevant percentage of aggregates with a mean radius slightly smaller than 30 nm. In contrast, both zinc(II) and copper(II) ions completely prevented the formation of soluble fibrillary aggregates. The biological effects of the various Aβ-metal complexes were studied in neuroblastoma cell cultures: Aβ-aluminum turned out to be the only species capable of triggering amyloid precursor and tau181 protein overproduction. Our results point out that Al can effectively interact with Aβ, forming "structured" aggregates with peculiar biophysical properties which are associated with a high neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号