首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R A Stuart  W Neupert 《Biochimie》1990,72(2-3):115-121
The cytochrome c import pathway differs markedly from the general route taken by the majority of other imported proteins, which is characterized by the import involvement of namely, surface receptors, the general insertion protein (GIP), contact sites and by the requirement of a membrane potential (delta psi). Unique features of both the cytochrome c precursor (apocytochrome c) and of the mechanism that transports it into mitochondria, have contributed to the evolution of a distinct import pathway that is not shared by any other mitochondrial protein analysed thus far. The cytochrome c pathway is particularly unique because i) apocytochrome c appears to have spontaneous membrane insertion-activity; ii) cytochrome c heme lyase seems to act as a specific binding site in lieu of a surface receptor and; iii) covalent heme addition and the associated refolding of the polypeptide appears to provide the free energy for the translocation of the cytochrome c polypeptide across the outer mitochondrial membrane.  相似文献   

2.
Activation of c-Myc sensitizes cells to apoptosis induction by ligand-activated death receptors. Such sensitization to death receptors by oncogenes may well be the mechanism underlying tumor cell sensitivity to tumor necrosis factor (TNF) or TNF-related apoptosis-inducing ligand (TRAIL). The mechanism by which this c-Myc-induced sensitization occurs is unclear but could involve modulation of expression of death receptors or their ligands or potentiation of the sensitivity of mitochondria to release pro-apoptotic effectors such as holocytochrome c. Here, we show that ectopic expression of the death receptor signaling protein RIP (receptor-interactive protein) triggers apoptosis via a FAS-associated death domain protein (FADD) and caspase 8-dependent pathway. Induction of apoptosis by this intracellular activation of the death receptor signaling pathway is significantly augmented by c-Myc expression. Moreover, c-Myc expression strongly promotes the potential of RIP to induce cytochrome c release from mitochondria. This implicates the mitochondrial apoptotic pathway in this synergy, a notion confirmed by the inability of c-Myc to sensitize to RIP killing in cells lacking the obligate mitochondrial apoptotic effectors Bax and Bak. We conclude that the lethality of the RIP-activated cytosolic caspase 8 pathway is augmented by c-Myc priming mitochondria to release cytochrome c. This places the intersection of apoptotic synergy between c-Myc and death receptor signaling downstream of the death receptors.  相似文献   

3.
Aldehyde-terminated self-assembled monolayers (SAMs) on gold surfaces were modified with proteins and employed to capture intact living cells through specific ligand-cell surface receptor interactions. In our model system, the basic fibroblast growth factor (bFGF) binding receptor was targeted on baby hamster kidney (BHK-21) cells. Negative control and target proteins were immobilized on a gold surface by coupling protein primary amines to surface aldehyde groups. Cell-binding was monitored by phase contrast microscopy or surface plasmon resonance (SPR) imaging. The specificity of the receptor-ligand interaction was confirmed by the lack of cell binding to the negative control proteins, cytochrome c and insulin, and by the disruption of cell binding by treatment with heparitinase to destroy heparan sulfate which plays an essential role in the binding of bFGF to FGF receptors. This approach can simultaneously probe a large number of receptor-ligand interactions in cell populations and has potential for targeting and isolating cells from mixtures according to the receptors expressed on their surface.  相似文献   

4.
A new type of molecularly imprinted polymer (MIP)-based fluorescent artificial receptor was developed by anchoring MIP on the surface of denatured bovine serum albumin (dBSA) modified CdTe quantum dots (QDs) using the surface molecular imprinting process. The approach combined the merits of molecular imprinting technology and the fluorescent property of the CdTe QDs. The dBSA was used not only to modify the surface defects of the CdTe QDs, but also as assistant monomer to create effective recognition sites. Three different proteins, namely lysozyme (Lyz), cytochrome c (Cyt) and methylated bovine serum albumin (mBSA), were tested as the template molecules and then the receptors were synthesized by sol-gel reaction (imprinting process). The results of fluorescence and binding experiments demonstrated the recognition performance of the receptors toward the corresponding template. Under optimum conditions, the linear range for Lyz was from 1.4×10(-8) to 8.5×10(-6) M, and the detection limit was 6.8 nM. Moreover, the new artificial receptors were applied to separate and detect Lyz in real samples. This fluorescent artificial receptor may serve as a starting point in the design of highly effective synthetic fluorescent receptor for recognition of target protein.  相似文献   

5.
Signal regulatory protein (SIRP) alpha is a membrane receptor that sends inhibitory signals to myeloid cells by engagement of CD47. The high resolution x-ray structure of the N-terminal ligand binding domain shows it to have a distinctive immunoglobulin superfamily V-like fold. Site-directed mutagenesis suggests that CD47 is bound at a surface involving the BC, FG, and DE loops, which distinguishes it from other immunoglobulin superfamily surface proteins that use the faces of the fold, but resembles antigen receptors. The SIRP interaction is confined to a single domain, and its use of an extended DE loop strengthens the similarity with T cell receptor binding and the suggestion that they are closely related in evolution. The employment of loops to form the CD47-binding surface provides a mechanism for small sequence changes to modulate binding specificity, explaining the different binding properties of SIRP family members.  相似文献   

6.
Adenosine-to-inosine RNA editing events that have been demonstrated for 5HT (2C) receptors resulted in alterations of the amino acid sequence at positions 156, 158 and 160 in the intracellular loop 2 (IL2) region. The edited receptor isoforms were shown to have reduced basal activity, but similar maximum responses to agonist binding. To identify the molecular mechanism of these pharmacological effects of editing we explored the conformational properties of the edited IL2 in comparison with the wild type. The results from conformational studies of the IL2 isoforms, using biased Monte Carlo simulations with an implicit solvent model based on a screened Coulomb potential, show that the compared loops differ in their preferred spatial orientations as a result of differences in the conformational space that is accessible to them by energy criteria. For the IL2 of the unedited (5HT (2C-INI) ) receptor, the preference for structures oriented towards the 7TM bundle is larger than for the 5HT (2C-VGV) edited receptor. This difference in preferred orientation can affect the association of IL2 with other intracellular loop domains involved in G protein coupling and hence the coupling efficiency. The results illustrate the high sensitivity of the system to small changes in the interaction surface presented to other intracellular loops, and/or the G protein.  相似文献   

7.
The lutropin (LH) receptor, which belongs to the family of G-protein coupled receptors, consists of an extracellular hydrophilic N-terminal extension of 341 amino acids and a membrane-embedded C-terminal region of 333 amino acids. This C-terminal region comprises a short N terminus, seven transmembrane domains, three cytoplasmic loops, three exoplasmic loops, and a C terminus. Recently, it was reported that the N-terminal extension of the LH receptor alone or a naturally occurring variant LH receptor similar to the N-terminal extension is capable of binding the hormone with an affinity slightly higher than that of the native receptor. This finding raises a question as to whether the N-terminal extension represents the entire hormone binding site and, if so, how is hormone binding transduced to the activation of a G-protein? In an attempt to answer this important question, we have prepared truncated receptors containing an N-terminal extension as short as 10 amino acids. Surprisingly, the truncated receptors were not only capable of binding the hormone, albeit with low affinities, but also capable of stimulating cAMP synthesis. These results suggest a possibility that the hormone, at least in part, interacts with the membrane-embedded C-terminal region and modulates it to activate adenylate cyclase. The low hormone binding affinities of the truncated receptors taken together with high affinity hormone binding to the N-terminal extension of the LH receptor indicate the existence of two or more contact points between the receptor and the hormone.  相似文献   

8.
The electron transfer complex between bovine cytochrome c oxidase and horse cytochrome c has been predicted with the docking program DOT, which performs a complete, systematic search over all six rotational and translational degrees of freedom. Energies for over 36 billion configurations were calculated, providing a free-energy landscape showing guidance of positively charged cytochrome c to the negative region on the cytochrome c oxidase surface formed by subunit II. In a representative configuration, the solvent-exposed cytochrome c heme edge is within 4 A of the indole ring of subunit II residue Trp(104), indicating a likely electron transfer path. These two groups are surrounded by a small, hydrophobic contact region, which is surrounded by electrostatically complementary hydrophilic interactions. Cytochrome c/cytochrome c oxidase interactions of Lys(13) with Asp(119) and Lys(72) with Gln(103) and Asp(158) are the most critical polar interactions due to their proximity to the hydrophobic region and exclusion from bulk solvent. The predicted complex matches previous mutagenesis, binding, and time-resolved kinetics studies that implicate Trp(104) in electron transfer and show the importance of specific charged residues to protein affinity. Electrostatic forces not only enhance long range protein/protein association; they also predominate in short range alignment, creating the transient interaction needed for rapid turnover.  相似文献   

9.
The dissociation constants for the binding of Rhodobacter capsulatus cytochrome c2 and its K93P mutant to the cytochrome bc1 complex embedded in a phospholipid bilayer were measured by plasmon waveguide resonance spectroscopy in the presence and absence of the inhibitor stigmatellin. The reduced form of cytochrome c2 strongly binds to reduced cytochrome bc1 (Kd = 0.02 microM) but binds much more weakly to the oxidized form (Kd = 3.1 microM). In contrast, oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a biphasic fashion with Kd values of 0.11 and 0.58 microM. Such a biphasic interaction is consistent with binding to two separate sites or conformations of oxidized cytochrome c2 and/or cytochrome bc1. However, in the presence of stigmatellin, we find that oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a monophasic fashion with high affinity (Kd = 0.06 microM) and reduced cytochrome c2 binds less strongly (Kd = 0.11 microM) but approximately 30-fold more tightly than in the absence of stigmatellin. Structural studies with cytochrome bc1, with and without the inhibitor stigmatellin, have led to the proposal that the Rieske protein is mobile, moving between the cytochrome b and cytochrome c1 components during turnover. In one conformation, the Rieske protein binds near the heme of cytochrome c1, while the cytochrome c2 binding site is also near the cytochrome c1 heme but on the opposite side from the Rieske site, where cytochrome c2 cannot directly interact with Rieske. However, the inhibitor, stigmatellin, freezes the Rieske protein iron-sulfur cluster in a conformation proximal to cytochrome b and distal to cytochrome c1. We conclude from this that the dual conformation of the Rieske protein is primarily responsible for biphasic binding of oxidized cytochrome c2 to cytochrome c1. This optimizes turnover by maximizing binding of the substrate, oxidized cytochrome c2, when the iron-sulfur cluster is proximal to cytochrome b and minimizing binding of the product, reduced cytochrome c2, when it is proximal to cytochrome c1.  相似文献   

10.
Structural basis of beta-adrenergic receptor function   总被引:31,自引:0,他引:31  
Receptors that mediate their actions by stimulating guanine nucleotide binding regulatory proteins (G proteins) share structural as well as functional similarities. The structural motif characteristic of receptors of this class includes seven hydrophobic putative transmembrane domains linked by hydrophilic loops. Genetic analysis of the beta-adrenergic receptor (beta AR) revealed that the ligand binding domain of this receptor, like that of rhodopsin, involves residues within the hydrophobic core of the protein. On the basis of these studies, a model for ligand binding to the receptor has been developed in which the amino group of an agonist or antagonist is anchored to the receptor through the carboxylate side chain of Asp113 in the third transmembrane helix. Other interactions between specific residues of the receptor and functional groups on the ligand have also been proposed. The interaction between the beta AR and the G protein Gs has been shown to involve an intracellular region that is postulated to form an amphiphilic alpha helix. This region of the beta AR is also critical for sequestration, which accompanies agonist-mediated desensitization, to occur. Structural similarities among G protein-linked receptors suggest that the information gained from the genetic analysis of the beta AR should help define functionally important regions of other receptors of this class.  相似文献   

11.
A family of tetrabiphenylporphyrin-based receptors has been synthesized. Receptor 7 showed sub-nanomolar affinity (K(d)=0.67 nM) in binding to the surface of cytochrome c. In addition, a stoichiometric amount of the receptor 7 caused a lowering in the T(m) of cytochrome c from 85 to 35 degrees C.  相似文献   

12.
Addition of platelet-derived growth factor (PDGF), recombinant insulin-like growth factor I (rIGF-I) or epidermal growth factor (EGF) to BALB/c 3T3 fibroblasts causes a marked increase in the binding of [125I]diferric transferrin to cell surface receptors. This effect is very rapid and is complete within 5 min. The effect of EGF is transient, with [125I]diferric transferrin binding returning to control values within 25 min. In contrast, PDGF and rIGF-I cause a prolonged stimulation of [125I]diferric transferrin binding that could be observed for up to 2 h. The increase in the binding of [125I]diferric transferrin caused by growth factors was investigated by analysis of the binding isotherm. Epidermal growth factor, PDGF and rIGF-I were found to increase the cell surface expression of transferrin receptors rather than to alter the affinity of the transferrin receptors. This result was confirmed in human fibroblasts by the demonstration that EGF, PDGF and rIGF-I could stimulate the binding of a monoclonal antibody directed against the transferrin receptor (OKT9) to the cell surface. Furthermore, PDGF and rIGF-I stimulated the sustained uptake of [59Fe]diferric transferrin by BALB/c 3T3 fibroblasts, while EGF transiently increased uptake. Thus the effect of these growth factors to increase the cell surface expression of the transferrin receptor appears to have an important physiological consequence.  相似文献   

13.
Cys-loop receptor ligand binding sites are located at subunit interfaces where they are lined by loops A-C from one subunit and loops D-F from the adjacent subunit. Agonist binding induces large conformational changes in loops C and F. However, it is controversial as to whether these conformational changes are essential for gating. Here we used voltage clamp fluorometry to investigate the roles of loops C and F in gating the α1 β2 γ2 GABA(A) receptor. Voltage clamp fluorometry involves labeling introduced cysteines with environmentally sensitive fluorophores and inferring structural rearrangements from ligand-induced fluorescence changes. Previous attempts to define the roles of loops C and F using this technique have focused on homomeric Cys-loop receptors. However, the problem with studying homomeric receptors is that it is difficult to eliminate the possibility of bound ligands interacting directly with attached fluorophores at the same site. Here we show that ligands binding to the β2-α1 interface GABA binding site produce conformational changes at the adjacent subunit interface. This is most likely due to agonist-induced loop C closure directly altering loop F conformation at the adjacent α1-β2 subunit interface. However, as antagonists and agonists produce identical α1 subunit loop F conformational changes, these conformational changes appear unimportant for gating. Finally, we demonstrate that TM2-TM3 loops from adjacent β2 subunits in α1 β2 receptors can dimerize via K24'C disulfides in the closed state. This result implies unexpected conformational mobility in this crucial part of the gating machinery. Together, this information provides new insights into the activation mechanisms of Cys-loop receptors.  相似文献   

14.
Periplasmic substrate binding proteins are known for iron, zinc, manganese, nickel, and molybdenum but not copper. Synechocystis PCC 6803 requires copper for thylakoid-localized plastocyanin and cytochrome oxidase. Here we show that mutants deficient in a periplasmic substrate binding protein FutA2 have low cytochrome oxidase activity and produce cytochrome c6 when grown under copper conditions (150 nm) in which wild-type cells use plastocyanin rather than cytochrome c6. Anaerobic separation of extracts by two-dimensional native liquid chromatography followed by metal analysis and peptide mass-fingerprinting establish that accumulation of copper-plastocyanin is impaired, but iron-ferredoxin is unaffected in DeltafutA2 grown in 150 nm copper. However, recombinant FutA2 binds iron in preference to copper in vitro with an apparent Fe(III) affinity similar to that of its paralog FutA1, the principal substrate binding protein for iron import. FutA2 is also associated with iron and not copper in periplasm extracts, and this Fe(III)-protein complex is absent in DeltafutA2. There are differences in the soluble protein and small-molecule complexes of copper and iron, and the total amount of both elements increases in periplasm extracts of DeltafutA2 relative to wild type. Changes in periplasm protein and small-molecule complexes for other metals are also observed in DeltafutA2. It is proposed that FutA2 contributes to metal partitioning in the periplasm by sequestering Fe(III), which limits aberrant Fe(III) associations with vital binding sites for other metals, including copper.  相似文献   

15.
The functional integration of growth factor signaling occurs at several levels in target cells. One of the most proximal mechanisms is receptor transmodulation, by which one activated receptor can regulate the expression of other receptors in the same cells. Well-established transregulatory loops involve platelet-derived growth factor (PDGF) down-regulation of epidermal growth factor (EGF) receptors and beta-type transforming growth factors modulation of PDGF receptors. We have studied the relationship between neu tyrosine kinase activation and the expression of the PDGF receptors in transfected NIH/3T3 cells. Expression of the neu oncogene, but not of the neu proto-oncogene, was associated with a decrease of PDGF alpha- and beta-receptors on the cell surface, as measured by [125-I]PDGF-AA and -BB binding. These results were corroborated by metabolic labeling and immunoprecipitation of the PDGF beta-receptors. PDGF alpha- and beta-receptor mRNAs were strongly decreased in the neu oncogene-transformed cells in comparison with control cells expressing the neu proto-oncogene. Down-regulation of the PDGF receptors and their mRNAs was also observed after EGF treatment of cells expressing a chimeric EGF receptor/neu receptor, where the neu tyrosine kinase is activated by EGF binding. These results show that the neu tyrosine kinase can down-modulate PDGF receptor expression, and the effect is mediated via decreased PDGF receptor mRNA levels.  相似文献   

16.
17.
The kinetics of oxidation of eight different singly substituted 4-carboxy-2,6-dinitrophenyl (CDNP) horse ferrocytochromes c, modified at lysine 7, 13, 25, 27, 60, 72, 86, or 87, and of one trinitrophenyl horse ferrocytochrome c, modified at lysine 13, by the 3- and 3+ inorganic complexes hexacyanoferrate(III) (Fe(CN)6(3-) ) and tris(1,10-phenanthroline)cobalt(III) (Co(phen)3(3+) ) have been characterized. The influence of the modified residues on the bimolecular rate constants for these reactions define the protein molecular surface involved. The site of electron exchange for both oxidants appears to be the solvent accessible edge of the heme prosthetic group or a closely related structure on the "front" surface of the molecule. The reaction with Fe(CN)6(3-) is most strongly influenced by modification of lysine 72, a residue to the left of the exposed heme edge. (CDNP lysine 72 cytochrome c yields a 3.6-fold decrease in the bimolecular rate constant, as compared to that for the native protein.) However, it is the region around lysine 27, to the right of the heme edge, that is most influential in the reaction with Co(phen)3(3+). (CDNP-lysine 27 cytochrome c exhibits a 7.3-fold increase in the rate constant, as compared to that for the native protein.) The kinetics of reaction of the CDNP-lysine 13, 60, 72, and 87 modified cytochromes c with Fe(CN)5(4-aminopyridine)2- as oxidant and Fe(CN)5(4-aminopyridine)3- and Fe(CN)5-(imidazole)3- as reductants have also been determined and further illustrate the influence of electrostatics on the kinetics of such protein-small molecule electron exchanges.  相似文献   

18.
αβ T-cell receptors (TCRs) engage antigens using complementarity-determining region (CDR) loops that are either germ line-encoded (CDR1 and CDR2) or somatically rearranged (CDR3). TCR ligands compose a presentation platform (major histocompatibility complex (MHC)) and a variable antigenic component consisting of a short “foreign” peptide. The sequence of events when the TCR engages its peptide-MHC (pMHC) ligand remains unclear. Some studies suggest that the germ line elements of the TCR engage the MHC prior to peptide scanning, but this order of binding is difficult to reconcile with some TCR-pMHC structures. Here, we used TCRs that exhibited enhanced pMHC binding as a result of mutations in either CDR2 and/or CDR3 loops, that bound to the MHC or peptide, respectively, to dissect the roles of these loops in stabilizing TCR-pMHC interactions. Our data show that TCR-peptide interactions play a strongly dominant energetic role providing a binding mode that is both temporally and energetically complementary with a system requiring positive selection by self-pMHC in the thymus and rapid recognition of non-self-pMHC in the periphery.  相似文献   

19.
Preproteins destined for mitochondria either are synthesized with amino-terminal signal sequences, termed presequences, or possess internal targeting information within the protein. The preprotein translocase of the outer mitochondrial membrane (designated Tom) contains specific import receptors. The cytosolic domains of three import receptors, Tom20, Tom22, and Tom70, have been shown to interact with preproteins. Little is known about the internal targeting information in preproteins and the distribution of binding sequences for the three import receptors. We have studied the binding of the purified cytosolic domains of Tom20, Tom22, and Tom70 to cellulose-bound peptide scans derived from a presequence-carrying cleavable preprotein, cytochrome c oxidase subunit IV, and a non-cleavable preprotein with internal targeting information, the phosphate carrier. All three receptor domains are able to bind efficiently to linear 13-mer peptides, yet with different specificity. Tom20 preferentially binds to presequence segments of subunit IV. Tom22 binds to segments corresponding to the carboxyl-terminal part of the presequence and the amino-terminal part of the mature protein. Tom70 does not bind efficiently to any region of subunit IV. In contrast, Tom70 and Tom20 bind to multiple segments within the phosphate carrier, yet the amino-terminal region is excluded. Both charged and uncharged peptides derived from the phosphate carrier show specific binding properties for Tom70 and Tom20, indicating that charge is not a critical determinant of internal targeting sequences. This feature contrasts with the crucial role of positively charged amino acids in presequences. Our results demonstrate that linear peptide segments of preproteins can serve as binding sites for all three receptors with differential specificity and imply different mechanisms for translocation of cleavable and non-cleavable preproteins.  相似文献   

20.
T cell receptor recognition of peptide/MHC has been described as proceeding through a "two-step" process in which the TCR first contacts the MHC molecule prior to formation of the binding transition state using the germline-encoded CDR1 and CDR2 loops. The receptor then contacts the peptide using the hypervariable CDR3 loops as the transition state decays to the bound state. The model subdivides TCR binding into peptide-independent and peptide-dependent steps, demarcated at the binding transition state. Investigating the two-step model, here we show that two TCRs that recognize the same peptide/MHC bury very similar amounts of solvent-accessible surface area in their transition states. However, 1300-1500 A2 of surface area is buried in each, a significant amount suggestive of participation of peptide and associated CDR3 surface. Consistent with this interpretation, analysis of peptide and TCR variants indicates that stabilizing contacts to the peptide are formed within both transition states. These data are incompatible with the original two-step model, as are transition state models built using the principle of minimal frustration commonly employed in the investigation of protein folding and binding transition states. These findings will be useful in further explorations of the nature of TCR binding transition states, as well as ongoing efforts to understand the mechanisms by which T cell receptors recognize the composite peptide/MHC surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号