首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein synthesis, in particular peptide-chain elongation, consumes cellular energy. Anoxia activates AMP-activated protein kinase (AMPK, see ), resulting in the inhibition of biosynthetic pathways to conserve ATP. In anoxic rat hepatocytes or in hepatocytes treated with 5-aminoimidazole-4-carboxamide (AICA) riboside, AMPK was activated and protein synthesis was inhibited. The inhibition of protein synthesis could not be explained by changes in the phosphorylation states of initiation factor 4E binding protein-1 (4E-BP1) or eukaryotic initiation factor 2alpha (eIF2alpha). However, the phosphorylation state of eukaryotic elongation factor 2 (eEF2) was increased in anoxic and AICA riboside-treated hepatocytes and in AICA riboside-treated CHO-K1 cells, and eEF2 phosphorylation is known to inhibit its activity. Incubation of CHO-K1 cells with increasing concentrations of 2-deoxyglucose suggested that the mammalian target of the rapamycin (mTOR) signaling pathway did not play a major role in controlling the level of eEF2 phosphorylation in response to mild ATP depletion. In HEK293 cells, transfection of a dominant-negative AMPK construct abolished the oligomycin-induced inhibition of protein synthesis and eEF2 phosphorylation. Lastly, eEF2 kinase, the kinase that phosphorylates eEF2, was activated in anoxic or AICA riboside-treated hepatocytes. Therefore, the activation of eEF2 kinase by AMPK, resulting in the phosphorylation and inactivation of eEF2, provides a novel mechanism for the inhibition of protein synthesis.  相似文献   

2.
Protein synthesis consumes a high proportion of the metabolic energy of mammalian cells, and most of this is used by peptide chain elongation. An important regulator of energy supply and demand in eukaryotic cells is the AMP-activated protein kinase (AMPK). The rate of peptide chain elongation can be modulated through the phosphorylation of eukaryotic elongation factor (eEF) 2, which inhibits its activity and is catalyzed by a specific calcium/calmodulin-dependent protein kinase termed eEF2 kinase. Here we show that AMPK directly phosphorylates eEF2 kinase, and we identify the major site of phosphorylation as Ser-398 in a regulatory domain of eEF2 kinase. AMPK also phosphorylates two other sites (Ser-78 and Ser-366) in eEF2 kinase in vitro. We develop appropriate phosphospecific antisera and show that phosphorylation of Ser-398 in eEF2 kinase is enhanced in intact cells under a range of conditions that activate AMPK and increase the phosphorylation of eEF2. Ser-78 and Ser-366 do not appear to be phosphorylated by AMPK within cells. Although cardiomyocytes appear to contain a distinct isoform of eEF2 kinase, it also contains a site corresponding to Ser-398 that is phosphorylated by AMPK in vitro. Stimuli that activate AMPK and increase eEF2 phosphorylation within cells increase the activity of eEF2 kinase. Thus, AMPK and eEF2 kinase may provide a key link between cellular energy status and the inhibition of protein synthesis, a major consumer of metabolic energy.  相似文献   

3.
Protein synthesis, in particular peptide chain elongation, is an energy-consuming biosynthetic process. AMP-activated protein kinase (AMPK) is a key regulatory enzyme involved in cellular energy homeostasis. Therefore, we tested the hypothesis that, as in liver, it could mediate the inhibition of protein synthesis by oxygen deprivation in heart by modulating the phosphorylation of eukaryotic elongation factor-2 (eEF2), which becomes inactive in its phosphorylated form. In anoxic cardiomyocytes, AMPK activation was associated with an inhibition of protein synthesis and an increase in phosphorylation of eEF2. Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), did not mimic the effect of oxygen deprivation to inhibit protein synthesis in cardiomyocytes or lead to eEF2 phosphorylation in perfused hearts, suggesting that AMPK activation did not inhibit mTOR/p70 ribosomal protein S6 kinase (p70S6K) signaling. Human recombinant eEF2 kinase (eEF2K) was phosphorylated by AMPK in a time- and AMP-dependent fashion, and phosphorylation led to eEF2K activation, similar to that observed in extracts from ischemic hearts. In contrast, increasing the workload resulted in a dephosphorylation of eEF2, which was rapamycin-insensitive, thus excluding a role for mTOR in this effect. eEF2K activity was unchanged by increasing the workload, suggesting that the decrease in eEF2 phosphorylation could result from the activation of an eEF2 phosphatase.  相似文献   

4.
McLeod LE  Proud CG 《FEBS letters》2002,531(3):448-452
Translation elongation consumes a high proportion of cellular energy and can be regulated by phosphorylation of elongation factor eEF2 which inhibits its activity. We have studied the effects of ATP depletion on the phosphorylation of eEF2 in adult rat ventricular cardiomyocytes. Energy depletion rapidly leads to inhibition of protein synthesis and increased phosphorylation of eEF2. Stimulation of the AMP-activated protein kinase also causes increases eEF2 phosphorylation. Only at later times is an effect on mTOR signalling observed. These data suggest that energy depletion leads to inhibition of protein synthesis through phosphorylation of eEF2 independently of inhibition of mTOR signalling.  相似文献   

5.
HIV anti-retroviral drugs decrease protein synthesis, although the underlying regulatory mechanisms of this process are not fully established. Therefore, we investigated the effects of the HIV protease inhibitor lopinavir (LPV) on protein metabolism. We also characterized the mechanisms that mediate the effects of this drug on elongation factor-2 (eEF2), a key component of the translational machinery. Treatment of C2C12 myocytes with LPV produced a dose-dependent inhibitory effect on protein synthesis. This effect was observed at 15 min and was maintained for at least 4 h. Mechanistically, LPV increased the phosphorylation of eEF2 and thereby decreased the activity of this protein. Increased phosphorylation of eEF2 was associated with increased activity of its upstream regulators AMP-activated protein kinase (AMPK) and eEF2 kinase (eEF2K). Both AMPK and eEF2K directly phosphorylated eEF2 in an in vitro kinase assay suggesting two distinct paths lead to eEF2 phosphorylation. To verify this connection, myocytes were treated with the AMPK inhibitor compound C. Compound C blocked eEF2K and eEF2 phosphorylation, demonstrating that LPV affects eEF2 activity via an AMPK-eEF2K dependent pathway. In contrast, incubation of myocytes with rottlerin suppressed eEF2K, but not eEF2 phosphorylation, suggesting that eEF2 can be regulated independent of eEF2K. Finally, LPV did not affect PP2A activity when either eEF2 or peptide was used as the substrate. Collectively, these results indicate that LPV decreases protein synthesis, at least in part, via inhibition of eEF2. This appears regulated by AMPK which can act directly on eEF2 or indirectly via the action of eEF2K.  相似文献   

6.
Ethanol decreases protein synthesis in cells, although the underlying regulatory mechanisms of this process are not fully established. In the present study incubation of C2C12 myocytes with 100 mm EtOH decreased protein synthesis while markedly increasing the phosphorylation of eukaryotic elongation factor 2 (eEF2), a key component of the translation machinery. Both mTOR and MEK pathways were found to play a role in regulating the effect of EtOH on eEF2 phosphorylation. Rapamycin, an inhibitor of mammalian target of rapamycin, and the MEK inhibitor PD98059 blocked the EtOH-induced phosphorylation of eEF2, whereas the p38 MAPK inhibitor SB202190 had no effect. Unexpectedly, EtOH decreased the phosphorylation and activity of the eEF2 upstream regulator eEF2 kinase. Likewise, treatment of cells with the inhibitor rottlerin did not block the stimulatory effect of EtOH on eEF2, suggesting that eEF2 kinase (eEF2K) does not play a role in regulating eEF2. In contrast, increased eEF2 phosphorylation was correlated with an increase in AMP-activated protein kinase (AMPK) phosphorylation and activity. Compound C, an inhibitor of AMPK, suppressed the effects of EtOH on eEF2 phosphorylation but had no effect on eEF2K, indicating that AMPK regulates eEF2 independent of eEF2K. Finally, EtOH decreased protein phosphatase 2A activity when either eEF2 or AMPK was used as the substrate. Thus, this later action may partially account for the increased phosphorylation of eEF2 in response to EtOH and the observed sensitivity of AMPK to rapamycin and PD98059 treatments. Collectively, the induction of eEF2 phosphorylation by EtOH is controlled by an increase in AMPK and a decrease in protein phosphatase 2A activity.  相似文献   

7.
A necessary mediator of cardiac myocyte enlargement is protein synthesis, which is controlled at the levels of both translation initiation and elongation. Eukaryotic elongation factor-2 (eEF2) mediates the translocation step of peptide-chain elongation and is inhibited through phosphorylation by eEF2 kinase. In addition, p70S6 kinase can regulate protein synthesis by phosphorylating eEF2 kinase or via phosphorylation of ribosomal protein S6. We have recently shown that eEF2 kinase is also controlled by phosphorylation by AMP-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis. Moreover, the mammalian target of rapamycin has also been shown to be inhibited, indirectly, by AMPK, thus leading to the inhibition of p70S6 kinase. Although AMPK activation has been shown to modulate protein synthesis, it is unknown whether AMPK could also be a regulator of cardiac hypertrophic growth. Therefore, we investigated the role of AMPK activation in regulating protein synthesis during both phenylephrine- and Akt-induced cardiac hypertrophy. Metformin and 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside were used to activate AMPK in neonatal rat cardiac myocytes. Activation of AMPK significantly decreased protein synthesis induced by phenylephrine treatment or by expression of constitutively active Akt. Activation of AMPK also resulted in decreased p70S6 kinase phosphorylation and increased phosphorylation of eEF2, suggesting that inhibition of protein synthesis involves the eEF2 kinase/eEF2 axis and/or the p70S6 kinase pathway. Together, our data suggest that the inhibition of protein synthesis by pharmacological activation of AMPK may be a key regulatory mechanism by which hypertrophic growth can be controlled.  相似文献   

8.
Eukaryotic elongation factor-2 kinase (eEF2K) relays growth and stress signals to protein synthesis through phosphorylation and inactivation of eukaryotic elongation factor 2 (eEF2). 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) is a widely accepted inhibitor of mammalian eEF2K and an efficacious anti-proliferation agent against different cancer cells. It implied that eEF2K could be an efficacious anticancer target. However, eEF2K siRNA was ineffective against cancer cells including those sensitive to NH125. To test if pharmacological intervention differs from siRNA interference, we identified a highly selective small molecule eEF2K inhibitor A-484954. Like siRNA, A-484954 had little effect on cancer cell growth. We carefully examined the effect of NH125 and A-484954 on phosphorylation of eEF2, the known cellular substrate of eEF2K. Surprisingly, NH125 increased eEF2 phosphorylation, whereas A-484954 inhibited the phosphorylation as expected for an eEF2K inhibitor. Both A-484954 and eEF2K siRNA inhibited eEF2K and reduced eEF2 phosphorylation with little effect on cancer cell growth. These data demonstrated clearly that the anticancer activity of NH125 was more correlated with induction of eEF2 phosphorylation than inhibition of eEF2K. Actually, induction of eEF2 phosphorylation was reported to correlate with inhibition of cancer cell growth. We compared several known inducers of eEF2 phosphorylation including AMPK activators and an mTOR inhibitor. Interestingly, stronger induction of eEF2 phosphorylation correlated with more effective growth inhibition. We also explored signal transduction pathways leading to NH125-induced eEF2 phosphorylation. Preliminary data suggested that NH125-induced eEF2 phosphorylation was likely mediated through multiple pathways. These observations identified an opportunity for a new multipathway approach to anticancer therapies.  相似文献   

9.
Activation of the elongation factor 2 kinase (eEF2K) leads to the phosphorylation and inhibition of the elongation factor eEF2, reducing mRNA translation rates. Emerging evidence indicates that the regulation of factors involved in protein synthesis may be critical for controlling diverse biological processes including cancer progression. Here we show that inhibitors of the HIV aspartyl protease (HIV‐PIs), nelfinavir in particular, trigger a robust activation of eEF2K leading to the phosphorylation of eEF2. Beyond its anti‐viral effects, nelfinavir has antitumoral activity and promotes cell death. We show that nelfinavir‐resistant cells specifically evade eEF2 inhibition. Decreased cell viability induced by nelfinavir is impaired in cells lacking eEF2K. Moreover, nelfinavir‐mediated anti‐tumoral activity is severely compromised in eEF2K‐deficient engrafted tumors in vivo. Our findings imply that exacerbated activation of eEF2K is detrimental for tumor survival and describe a mechanism explaining the anti‐tumoral properties of HIV‐PIs.  相似文献   

10.
Smith EM  Proud CG 《The EMBO journal》2008,27(7):1005-1016
The calcium/calmodulin-dependent kinase that phosphorylates and inactivates eukaryotic elongation factor 2 (eEF2 kinase; eEF2K) is subject to multisite phosphorylation, which regulates its activity. Phosphorylation at Ser359 inhibits eEF2K activity even at high calcium concentrations. To identify the kinase that phosphorylates Ser359 in eEF2K, we developed an extensive purification protocol. Tryptic mass fingerprint analysis identified it as cdc2 (cyclin-dependent kinase 1). cdc2 co-purifies with Ser359 kinase activity and cdc2-cyclin B complexes phosphorylate eEF2K at Ser359. We demonstrate that cdc2 contributes to controlling eEF2 phosphorylation in cells. cdc2 is activated early in mitosis. Kinase activity against Ser359 in eEF2K also peaks at this stage of the cell cycle and eEF2 phosphorylation is low in mitotic cells. Inactivation of eEF2K by cdc2 may serve to keep eEF2 active during mitosis (where calcium levels rise) and thereby permit protein synthesis to proceed in mitotic cells. Amino-acid starvation decreases cdc2's activity against eEF2K, whereas loss of TSC2 (a negative regulator of mammalian target of rapamycin complex 1(mTORC1)) increases it. These data closely match the control of Ser359 phosphorylation and indicate that cdc2 may be regulated by mTORC1.  相似文献   

11.
Regulation at the level of translation in eukaryotes is feasible because of the longer lifetime of eukaryotic mRNAs in the cell. The elongation stage of mRNA translation requires a substantial amount of energy and also eukaryotic elongation factors (eEFs). The important component of eEFs, i.e. eEF2 promotes the GTP-dependent translocation of the nascent protein chain from the A-site to the P-site of the ribosome. Mostly the eEF2 is regulated by phosphorylation and dephosphorylation by a specific kinase known as eEF2 kinase, which itself is up-regulated by various mechanisms in the eukaryotic cell. The activity of this kinase is dependent on calcium ions and calmodulin. Recently it has been shown that the activity of eEF2 kinase is regulated by MAP kinase signalling and mTOR signalling pathway. There are also various stimuli that control the peptide chain elongation in eukaryotic cell; some stimuli inhibit and some activate eEF2. These reports provide the mechanisms by which cells likely serve to slow down protein synthesis and conserve energy under nutrient deprived conditions via regulation of eEF2. The regulation via eEF2 has also been seen in mammary tissue of lactating cows, suggesting that eEF2 may be a limiting factor in milk protein synthesis. Regulation at this level provides the molecular understanding about the control of protein translocation reactions in eukaryotes, which is critical for numerous biological phenomenons. Further the elongation factors could be potential targets for regulation of protein synthesis like milk protein synthesis and hence probably its foreseeable application to synthetic biology.  相似文献   

12.
eEF2 phosphorylation is under tight control to maintain mRNA translation elongation. We report that TGFβ activates eEF2 by decreasing eEF2 phosphorylation and simultaneously increasing eEF2 kinase phosphorylation. Remarkably, inhibition of Erk1/2 blocked the TGFβ-induced dephosphorylation and phosphorylation of eEF2 and eEF2 kinase. TGFβ increased phosphorylation of p90Rsk in an Erk1/2-dependent manner. Inactive p90Rsk reversed TGFβ-inhibited phosphorylation of eEF2 and suppressed eEF2 kinase activity. Finally, inactive p90Rsk significantly attenuated TGFβ-induced protein synthesis and hypertrophy of mesangial cells. These results present the first evidence that TGFβ utilizes the two layered kinase module Erk/p90Rsk to activate eEF2 for increased protein synthesis during cellular hypertrophy.  相似文献   

13.
Eukaryotic elongation factor 2 kinase (eEF2K), an atypical calmodulin-dependent protein kinase, phosphorylates and inhibits eEF2, slowing down translation elongation. eEF2K contains an N-terminal catalytic domain, a C-terminal α-helical region and a linker containing several regulatory phosphorylation sites. eEF2K is expressed at high levels in certain cancers, where it may act to help cell survival, e.g., during nutrient starvation. However, it is a negative regulator of protein synthesis and thus cell growth, suggesting that cancer cells may possess mechanisms to inhibit eEF2K under good growth conditions, to allow protein synthesis to proceed. We show here that the mTORC1 pathway and the oncogenic Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway cooperate to restrict eEF2K activity. We identify multiple sites in eEF2K whose phosphorylation is regulated by mTORC1 and/or ERK, including new ones in the linker region. We demonstrate that certain sites are phosphorylated directly by mTOR or ERK. Our data reveal that glycogen synthase kinase 3 signaling also regulates eEF2 phosphorylation. In addition, we show that phosphorylation sites remote from the N-terminal calmodulin-binding motif regulate the phosphorylation of N-terminal sites that control CaM binding. Mutations in the former sites, which occur in cancer cells, cause the activation of eEF2K. eEF2K is thus regulated by a network of oncogenic signaling pathways.  相似文献   

14.
McLeod LE  Wang L  Proud CG 《FEBS letters》2001,489(2-3):225-228
The beta-adrenergic agonist isoproterenol increased the phosphorylation of elongation factor eEF2 in ventricular cardiomyocytes from adult rats (ARVC). Phosphorylation of eEF2 inhibits its activity, and protein synthesis was inhibited in ARVC concomitantly with increased eEF2 phosphorylation. eEF2 kinase activity in ARVC extracts was completely dependent upon Ca(2+)/calmodulin. In contrast to other cell types, however, treatments designed to raise intracellular cAMP failed to induce Ca(2+)/calmodulin-independent activity. Instead, they increased maximal eEF2 kinase activity. Similar data were obtained when partially purified ARVC eEF2 kinase was treated with cAMP-dependent protein kinase in vitro. These data suggest that ARVC possess a distinct isoform of eEF2 kinase.  相似文献   

15.
The purpose of the present study was to understand the mechanism by which activated protein kinase A (PKA) leads to down-regulation of cyclin D3 in lymphocytes. By using Jurkat cells as a model system, we have been able to demonstrate that cyclin D3 is reduced at the level of translation by inhibition of elongation. One of the important factors involved in translational elongation is the eukaryotic elongation factor 2 (eEF2). eEF2 promotes translation in its unphosphorylated form, and we observed a rapid phosphorylation of the eEF2-protein upon forskolin treatment. When using specific inhibitors of the eEF2-kinase prior to forskolin treatment, we were able to inhibit the increased phosphorylation of eEF2. Furthermore, inhibition of eEF2-kinase prevented the forskolin-mediated down-regulation of cyclin D3. Taken together, it appears that activation of PKA in Jurkat cells reduces the expression of cyclin D3 at the level of translational elongation by increasing the phosphorylation of eEF2 and thereby inhibiting its activity.  相似文献   

16.
Protein synthesis, especially translation elongation, requires large amounts of energy, which is often generated by oxidative metabolism. Elongation is controlled by phosphorylation of eukaryotic elongation factor 2 (eEF2), which inhibits its activity and is catalyzed by eEF2 kinase (eEF2K), a calcium/calmodulin-dependent α-kinase. Hypoxia causes the activation of eEF2K and induces eEF2 phosphorylation independently of previously known inputs into eEF2K. Here, we show that eEF2K is subject to hydroxylation on proline-98. Proline hydroxylation is catalyzed by proline hydroxylases, oxygen-dependent enzymes which are inactivated during hypoxia. Pharmacological inhibition of proline hydroxylases also stimulates eEF2 phosphorylation. Pro98 lies in a universally conserved linker between the calmodulin-binding and catalytic domains of eEF2K. Its hydroxylation partially impairs the binding of calmodulin to eEF2K and markedly limits the calmodulin-stimulated activity of eEF2K. Neuronal cells depend on oxygen, and eEF2K helps to protect them from hypoxia. eEF2K is the first example of a protein directly involved in a major energy-consuming process to be regulated by proline hydroxylation. Since eEF2K is cytoprotective during hypoxia and other conditions of nutrient insufficiency, it may be a valuable target for therapy of poorly vascularized solid tumors.  相似文献   

17.
Eukaryotic elongation factor 2 (eEF2) is a member of the GTP-binding translation elongation factor family that is essential for protein synthesis. eEF2 kinase (eEF2K) is a structurally and functionally unique protein kinase in the calmodulin-mediated signaling pathway. eEF2K phosphorylates eEF2, thereby inhibiting eEF2 function under stressful conditions. eEF2K regulates numerous processes, such as protein synthesis, cell cycle progression, and induction of autophagy and apoptosis in cancer cells. This review will demonstrate the mechanisms underlying eEF2K activity in cancer cells under different stresses, such as nutrient deprivation, hypoxia, and DNA damage via eEF2 regulation. In vivo, in vitro, and clinical studies indicated that eEF2K may be a novel biomarker and therapeutic target for cancer.  相似文献   

18.
Regulation of peptide-chain elongation in mammalian cells.   总被引:30,自引:0,他引:30  
The elongation phase of mRNA translation is the stage at which the polypeptide is assembled and requires a substantial amount of metabolic energy. Translation elongation in mammals requires a set of nonribosomal proteins called eukaryotic elongation actors or eEFs. Several of these proteins are subject to phosphorylation in mammalian cells, including the factors eEF1A and eEF1B that are involved in recruitment of amino acyl-tRNAs to the ribosome. eEF2, which mediates ribosomal translocation, is also phosphorylated and this inhibits its activity. The kinase acting on eEF2 is an unusual and specific one, whose activity is dependent on calcium ions and calmodulin. Recent work has shown that the activity of eEF2 kinase is regulated by MAP kinase signalling and by the nutrient-sensitive mTOR signalling pathway, which serve to activate eEF2 in response to mitogenic or hormonal stimuli. Conversely, eEF2 is inactivated by phosphorylation in response to stimuli that increase energy demand or reduce its supply. This likely serves to slow down protein synthesis and thus conserve energy under such circumstances.  相似文献   

19.
20.
Hypoxia is a state of low oxygen availability that limits tumor growth. The mechanism of protein synthesis inhibition by hypoxia and its circumvention by transformation are not well understood. Hypoxic breast epithelial cells are shown to downregulate protein synthesis by inhibition of the kinase mTOR, which suppresses mRNA translation through a novel mechanism mitigated in transformed cells: disruption of proteasome-targeted degradation of eukaryotic elongation factor 2 (eEF2) kinase and activation of the regulatory protein 4E-BP1. In transformed breast epithelial cells under hypoxia, the mTOR and S6 kinases are constitutively activated and the mTOR negative regulator tuberous sclerosis complex 2 (TSC2) protein fails to function. Gene silencing of 4E-BP1 and eEF2 kinase or TSC2 confers resistance to hypoxia inhibition of protein synthesis in immortalized breast epithelial cells. Breast cancer cells therefore acquire resistance to hypoxia by uncoupling oxygen-responsive signaling pathways from mTOR function, eliminating inhibition of protein synthesis mediated by 4E-BP1 and eEF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号