首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT n -Hexane, ethyl acetate, n -butanol, and water extracts of seventeen native plants (Taraxacum Platycarpum leaf, Artemisia prinseps leaf, Artemisia keiskeana whole, Chrysanthemum zawadskii whole, Petasites japonicus leaf, Allium tuberosom leaf, Lonicera japonica stem and leaf, Cassia obtussifolia whole, Hydrangea macrophylla leaf, Clivia miniata leaf, Pinus densiflora leaf, Taxus cuspidatas fruit, Thuja orientalis leaf, Juniperus chinensis stem, Zanthoxylum schinifolium peel, leaf, Citrus unshiu and Picrasma quassioides stem and leaf) were tested for repellent activity against Aedes albopoctus. The extracts of T. Platycarpum leaf ( n -hexane, BuOH, H2O), A. prinseps leaf ( n -hexane, BuOH, H2O), A. keiskeana whole ( n -hexane, BuOH, H2O), L. japonica stem (BuOH, H2O), L. japonica flower (H2O), H. macrophylla leaf (BuOH, H2O), C. miniata leaf (EtOAC), P. densiflora leaf ( n -hexane, BuOH), Z. schinifolium peel (EtOAC), Z. schinifolium leaf (EtOAC BuOH, H2O) and P. quassioides leaf ( n -hexane, H2O) exhibited excellent repellent activity against Aedes albopitus.  相似文献   

2.
SUMMARY: Sterilized raw sewage sludge enriched with sulphate and inoculated with pure strains of Desulphovibrio desulphuricans produced negligible sulphide. Unsterilized sludge supplemented with 7% (w/v) CaSO4.2H2O and inoculated with crude cultures of sulphate-reducing bacteria obtained from sewage yielded 1·0% S2- (wt S2- produced as H2S/vol. of raw sludge) in 6 months at 30°. By repeated subculture more active cultures developed which produced 1% S2- in 7 days and 1·2–1·9% in 28 days. Digested sludge yielded only 0·1% S2-. In semicontinuous fermentations at 30°, raw sludge without added sulphate produced 20 times its own volume of gas containing 70% CH4 and 30% CO2. When 5% CaSO4.2H2O and an active crude culture of sulphate reducers were added, gas production decreased steadily to zero. There were no differences in pH, temperature and redox potential in sludges producing methane or sulphide. The chief cause of inhibition appeared to be the action of sulphide: 0·02% soluble sulphide (S2-) totally inhibited methane formation; 0·01% S2- initially decreased gas production by one-quarter but there was a slow recovery to normal, suggesting acclimatization of the methane-producing organisms to sulphide.
Linked fermentations, in which gas from a methane fermentation swept H2S from a sulphide fermentation, gave a final gas mixture of about 60% CH4, 30% CO2 and 5–10% H2S. The yield of sulphide depended on the rate of sweeping.  相似文献   

3.
Soils contain two different activities for oxidation of hydrogen   总被引:1,自引:0,他引:1  
Abstract Hydrogen oxidation rates were measured in a neutral compost soil and an acidic sandy loam at H2 mixing ratios of 0.01 to 5000 ppmv. The kinetics were biphasic showing two different K m values for H2, one at about 10–40 nM dissolved H2, the other at about 1.2–1.4 μM H2. The low- K m activity was less sensitive to chloroform fumigation than the high- K m activity. If sterile soil was amended with Paracoccus denitrificans or a H2-oxidizing strain isolated from compost soil, it exhibited only a high- K m (0.7–0.9 μM) activity. It also failed to utilize H2 mixing ratios below a threshold of 1.6–3.0 ppmv H2 (160–300 mPa). A similar result was obtained when fresh soil samples were suspended in water, and H2 oxidation was determined from the decrease of dissolved H2. However, H2 was again utilized to mixing ratios lower than 0.05 ppmv, if the supernatant of the soil suspension or the settled soil particles were dried onto sterile soil or purified quarz sand. Obviously, soils contain two different activities for oxidation of H2: (1) a high- K m, high-threshold activity which apparently is due to aerobic H2-oxidizing bacteria, and (2) a low- K m, low-threshold activity whose origin is unknown but presumably is due to soil enzymes.  相似文献   

4.
Bean plantlets ( Phaseolus vulgaris L. cv. Topcrop) were stressed at the age of 16–18 days by gradual (2–8%) or abrupt addition of 6% (w/v) polyethylene glycol Mw 6000 (PEG 6000) to Hoagland solution. Leaf conductance, photosynthesis, internal CO2 partial pressure (Ci), relative water content (RWC), water content/dry weight (H2O/DW), apoplastic PEG concentrations and weight of leaves, stems and roots were determined. Leaf conductance, photosynthesis and Ci were determined on non-detached primary leaves, and leaf potentials (water, osmotic and turgor potentials) were investigated in freshly detached (non-rehydrated) primary leaves, both in treated and control plants; RWC and osmotic potential were also assessed at the null turgor point. Low PEG 6000 concentrations induced early and evident decrease in leaf conductance and photosynthesis, whereas Ci decreased only moderately and tended to recover during advanced stress. There were moderate though significant decreases in RWC and H2O/DW, no change or increases in water potential, no significant changes in osmotic potential and a moderate but significant increase in turgor potential. Even when referred to null turgor point, RWC significantly decreased and osmotic potential was unchanged. It was concluded that apoplastic PEG 6000 accumulation at evaporating sites would account for the early decrease in conductance which would also justify the unchanged or the prevalent increase in water potential and turgor potential. The subsequent PEG diffusion and concentration in the leaf apoplastic water would have induced the RWC and H2O/DW decrease and the final turgor flexion documented.  相似文献   

5.
The generation of ethylene from 1-aminocyclopropane-1-carboxylic acid (ACC) added to a cell-free preparation from etiolated pea ( Pisum sativum L. cv. Alaska) epicotyls was found not to be due to a specific ACC oxidase or to oxygen radicals. Rather, endogenously produced H2O and manganese ions are coupled in a reaction sequence which produces ethylene from ACC. In a model system, H2O and Mn2+ converted ACC to ethylene under conditions similar to those in the pea preparation. Ultrafiltration of the pea preparation inhibited ethylene production, but it could be reconstituted either by adding an H2O2-generating system to the ultrafiltrate or Mn2+ to the retentate. H2O2-generating systems could reconstitute ethylene formation in a heat-inactivated cell-free sample while the loss of ability to produce ethylene upon dialysis of the pea preparation correlated with the loss of Mn2+ from the sample. Studies using cell-free preparations to investigate ethylene synthesis should take care to exclude the possible involvement of H2O2 and Mn2+.  相似文献   

6.
Gas exchange, water-use efficiency (WUE), carbon isotope composition ( Δ 13C) and growth traits were compared among 5 populations of Eucalyptus microtheca F. Muell. Seedlings grown from seed collected across the natural distribution of the species were maintained under water-stressed and well-watered conditions. Gas exchange was measured in terms of net photosynthesis (A) and transpiration (E); WUE was measured in terms of instantaneous water-use efficiency (WUEi) and transpiration efficiency (WUET); growth traits were measured in terms of total biomass (TB), root/shoot ratio (RS), and specific leaf area density (DEN). Significant differences in all traits were detected among the populations. Overall population variation was 1.68–2.50 and 1.48–2.26 μmol CO2 uptake per mmol H2O transpired (WUEi), 1.97–3.04 and 1.64–2.36 g dry matter accumulation per kg water transpired (WUET), and Δ 13C was −28.81 to −26.75‰ and −30.56 to −30.04‰ under the water-stressed and well-watered conditions, respectively. In addition, WUEi, WUET and Δ 13C were significantly correlated with A, E, RS, DEN and TB. The study indicated that measurement of WUE may be a useful trait for selecting genotypes with improved drought adaptation and biomass productivity under different environmental conditions.  相似文献   

7.
Abstract: Mitochondrial complexes I, II, and III were studied in isolated brain mitochondrial preparations with the goal of determining their relative abilities to reduce O2 to hydrogen peroxide (H2O2) or to reduce the alternative electron acceptors nitroblue tetrazolium (NBT) and diphenyliodonium (DPI). Complex I and II stimulation caused H2O2 formation and reduced NBT and DPI as indicated by dichlorodihydrofluorescein oxidation, nitroformazan precipitation, and DPI-mediated enzyme inactivation. The O2 consumption rate was more rapid under complex II (succinate) stimulation than under complex I (NADH) stimulation. In contrast, H2O2 generation and NBT and DPI reduction kinetics were favored by NADH addition but were virtually unobservable during succinate-linked respiration. NADH oxidation was strongly suppressed by rotenone, but NADH-coupled H2O2 flux was accelerated by rotenone. α-Phenyl- N-tert -butyl nitrone (PBN), a compound documented to inhibit oxidative stress in models of stroke, sepsis, and parkinsonism, partially inhibited complex I-stimulated H2O2 flux and NBT reduction and also protected complex I from DPI-mediated inactivation while trapping the phenyl radical product of DPI reduction. The results suggest that complex I may be the principal source of brain mitochondrial H2O2 synthesis, possessing an "electron leak" site upstream from the rotenone binding site (i.e., on the NADH side of the enzyme). The inhibition of H2O2 production by PBN suggests a novel explanation for the broad-spectrum antioxidant and antiinflammatory activity of this nitrone spin trap.  相似文献   

8.
Abstract Dilution of anoxic slurries of paddy soil resulted in a proportional decrease of the rates of total methanogenesis and the rate constants of H2 turnover per gram soil. Dilution did not affect the fraction of H2/CO2-dependent methanogenesis which made up 22% of total CH4 production. However, dilution resulted in a ten fold decrease of the H2 steady state partial pressure from approximately 4 to 0.4 Pa indicating that H2/CO2-dependent methanogenesis was more or less independent of the H2 pool. The rates of H2 production calculated from the H2 turnover rate constants and the H2 steady state partial pressures accounted for only < 5% of H2/CO2-dependent methanogenesis in undiluted soil slurries and for even less after dilution. Upon dilution, the Gibbs free energy available for H2/CO2-dependent methanogenesis decreased from −28.4 to only −5.6 kJ per mol. The results indicate that methane was mainly produced from interspecies H2 transfer within syntrophic bacterial associations and was not significantly affected by the outside H2 pool.  相似文献   

9.
An obligately anaerobic spirochete designated strain SEBR 4228T (T = type strain) was isolated from an oil field of Congo, Central Africa. The strain grew optimally with a sodium chloride concentration of 5% (sodium chloride concentration growth range 1.0–10%) at 37°C (growth temperature range 20–40°C) and pH of 7.0–7.2 (pH growth range pH 5.5–8.0). Strain SEBR 4228T grew on carbohydrates (glucose, fructose, ribose, d -xylose, galactose, mannitol and mannose), glycerol, fumarate, peptides and yeast extract. Yeast extract was required for growth and could not be replaced by vitamins. It reduced thiosulfate and sulfur, to H2S. Glucose was oxidised to lactate, acetate, CO2 and H2S in the presence of thiosulfate but in its absence lactate, ethanol, CO2 and H2 were produced. Fumarate was fermented to acetate and succinate. The G+C content of strain SEBR 4228T was 50%. Strain SEBR 4228T was spiral shaped measuring 5–30 by 0.3–0.5 μm and was motile with a corkscrew-like motion. Electron microscopy revealed the presence of periplasmic flagella in a 1-2-1 arrangement. Strain SEBR 4228T possessed features typical of the members of the genus Spirochaeta . 16S rRNA sequence analysis revealed that it was closely related to Spirochaeta bajacaliforniensis (similarity 98.6%). The lack of DNA homology with S. bajacaliforniensis (38%), together with other phenotypic differences, indicated that strain SEBR 4228T is a new species, which we have designated Spirochaeta smaragdinae . The type strain is SEBR 4228T (= DSM 11293).  相似文献   

10.
Addition of small amounts of Fe2+, Zn2+, Cu2+ and thiamine-HCl to the culture medium was required for promoting the galacto-oligosaccharide (Gal-OS)-producing activity of Sterigmatomyces elviae CBS8119, when the concentration of yeast extract in the medium was lowered to 0·1 g l−1. Galacto-oligosaccharide production using a recycling cell culture was performed in a medium containing 360 mg ml−1 of lactose supplemented with optimal concentrations of Fe2+ (1·5 mg l−1 of FeSO4.7H2O), Zn2+ (15 mg l−1 of ZnSO4.7H2O), Cu2+ (0·5 mg l−1 of CuSO4.5H2O) and thiamine-HCl (1 mg l−1 ) . Galacto-oligosaccharide production was maintained at high levels during six cycles of production, with the amount of Gal-OS produced in each cycle being more than 216 mg ml−1 (weight yield of more than 60%).  相似文献   

11.
Abstract The temperature profiles have been determined for O2 reduction by activating substrates for whole cells and cell extracts of the psychrophilic, obligately anaerobic bacterium, strain B6, belonging to the Bacteroidaceae. The profiles were similar whether the cells were grown at 15 or 1°C, and also for cells harvested in the exponential or stationary phase. The H2O producing pyruvate oxidase displayed in cell-free extracts a considerably higher activity than the H2O2 producing NADH and NADPH oxidases at all temperatures in the range 30–1°C, and characteristically makes up a larger proportion of the total O2 reduction capacity the lower the temperature. It thus seems that the O2 scavenging property of the pyruvate oxidase, postulated to be utilized in a defense mechanism against the detrimental effects of the H2O2 producing pyridine nucleotide oxidases, is particularly well adapted to function at the low temperatures of the Barents Sea, from which this obligately anaerobic organism originates.  相似文献   

12.
Suspension-cultured rose ( Rosa damascena Mill. cv. Gloire de Guilan) cells irradiated with UV-C (254 nm. 558 J m−2) showed a transient production of H2O2 as measured by chemiluminescence of luminol in the presence of peroxidase (EC 1.1 1.1.7). The peak concentration of H2O2, which occurred at about 60–90 min after irradiation, was 8–9 μ M . The time course for the appearance of H2O2 matched that for UV–induced K+ efflux. Treatments that inhibited the UV-induced efflux of K+, including heat and overnight incubation with cycloheximide and diethylmaleate, also inhibited the appearance of H2O2. The converse was not always true, since catalase (EC 1.11.1.6. and salicylhydroxamic acid, which inhibited luminescence, did not stop K+ efflux. We conclude that H2O2 synthesis depends on K+ efflux. Because H2.O2 in the extracellular space is required for lignin synthesis in many plant tissues, we suggest that the UV–stimulated production of H2O2 is an integral part of a defensive lignin synthesis.  相似文献   

13.
The effect of MRS broth on the stability of hydrogen peroxide (H2O2) has been studied. Known concentrations (1–100 μg ml−1) of H2O2 were prepared in distilled water, phosphate buffer (pH 7·0) and MRS broth (pH 6·2 and 3·9). H2O2 was very stable in aqueous and buffer solutions but it was rapidly degraded in MRS broth (pH 3·9). The presence of H2O2 in MRS broth (pH 6·2) could not be detected.  相似文献   

14.
The Dutch elm disease (DED) pathogen Ophiostoma novo-ulmi Buissm. elicited the production of H2O2 in cell suspension cultures of the resistant species Ulmus pumila L. This response was not observed in suspensions of the susceptible elm U. campestris Mill. H2O2 production started after a lag time of 30–40 min following inoculation, peaked between 4 and 6 h and lasted up to 24 h. Treatment of the suspensions with exogenously added H2O2 did not cause accumulation of the sesquiterpene phytoalexins mansonones nor of the coumarin scopoletin. Spore germination and growth of O. novo-ulmi were significantly delayed with different amounts of H2O2 (0.1–1 m M ). These results suggest that H2O2 production is an inducible defence response which may contribute to DED resistance by delaying the growth of the pathogen at the earliest stages of infection. Whether H2O2 is involved in other elm defence responses to the pathogen is presently unknown, but its production seems to be an independent event from phytoalexin formation.  相似文献   

15.
Drought and salinity (i.e. soil water stress) are the main environmental factors limiting photosynthesis and respiration and, consequently, plant growth. This review summarizes the current status of knowledge on photosynthesis and respiration under water stress. It is shown that diffusion limitations to photosynthesis under most water stress conditions are predominant, involving decreased mesophyll conductance to CO2, an important but often neglected process. A general failure of photochemistry and biochemistry, by contrast, can occur only when daily maximum stomatal conductance ( g s) drops below 0.05–0.10 mol H2O m−2 s−1. Because these changes are preceded by increased leaf antioxidant activities ( g s below 0.15–0.20 mol H2O m−2 s−1), it is suggested that metabolic responses to severe drought occur indirectly as a consequence of oxidative stress, rather than as a direct response to water shortage. As for respiration, it is remarkable that the electron partitioning towards the alternative respiration pathway sharply increases at the same g s threshold, although total respiration rates are less affected. Despite the considerable improvement in the understanding of plant responses to drought, several gaps of knowledge are highlighted which should become research priorities for the near future. These include how respiration and photosynthesis interact at severe stress, what are the boundaries and mechanisms of photosynthetic acclimation to water stress and what are the factors leading to different rates of recovery after a stress period.  相似文献   

16.
Abstract Methane formation from formaldehyde and H2 or from carbon dioxide and H2, as performed by cell suspensions of Methanosarcina barkeri , was coupled to ATP synthesis. In correspondence with this, methane formation was inhibited by N , N '-dicyclohexylcarbodiimide (DCCD), which at the same time, caused a decrease of the intracellular ATP concentration but only a slow decrease of the membrane potential. Addition of the uncoupler tetrachlorosalicylanilide (TCS) led to a relief of the inhibition of methane formation from CH2O + H2, but not from CO2+ H2.  相似文献   

17.
Abstract Interspecies H2 transfer within methanogenic bacterial associations (MBA) accounted for 95–97% of the conversion of 14CO2 to 14CH4 in anoxic paddy soil. Only 3–5% of the 14CH4 were produced from the turnover of dissolved H2. The H2-syntrophic MBA developed within 5 days after the paddy soil had been submerged and placed under anoxic atmosphere. Afterwards, both the contribution of MBA to H2-dependent methanogenesis and the turnover of dissolved H2 did not change significantly for up to 7 months of incubation. However, while the rates of H2-dependent methanogenesis stayed relatively constant, the rates of total methanogenesis decreased. The contribution of MBA to H2-dependent methanogenesis was further enhanced to 99% when the temperature was shifted from 30°C to 17°C, or when the soil had been planted with rice. This enhancement was partially due to an increased utilization of dissolved H2 by chloroform-insensitive non-methanogenic bacteria, most probably homoacetogens, so that CH4 production was almost completely restricted to H2-syntrophic MBA. The activity of MBA, as measured by the conversion of 14CO2 to 14CH4, was stimulated by glucose, lactate, and ethanol to a similar or greater extent than by exogenous H2. Propionate and acetate had no effect.  相似文献   

18.
The effect of dissolved oxygen partial pressure on the accumulation of astaxanthin in the green alga Haematococcus lacustris ( Gir.) Rostaf (UTEX16) was studied in N-limited continuous chemostat cultures. The steady-state astaxanthin content measured against culture volume, cell number, and biomass dry weigh of Haematococcus cultures was proportional to the dissolved O2 partial pressure in the culture medium, over the range of 0–50% O2 The steady-state biomass dry weight concentrations remained at between 0.52 and 0.57 g. L-1 over the range of dissolved O2 partial pressure studied. Steady-state cell densities at dissolved O2 partial pressures above the air saturation level (1.13–1.58 × 105 cells.mL-1) were about half of that measured at lower dissolved O2 partial pressures (2.42–2.63 × 105 cells.mL-1). Both biflagellated zoospores and nonmotile aplanospores were found at steady state. The fraction of nonmotile cells was higher at dissolved O2 partial pressures above the air saturation level (94.44–98.01%) than at dissolved O2 partial pressure below the air level (79.64–86.12 and 91.75% ).  相似文献   

19.
Abstract. Theory and practice of non-steady-state portable photosynthesis instruments (LI-6000 and 6200, LI-COR Inc., Nebraska, U.S.A.) are presented. Mass balance equations for the time dependence of H2O and CO2 mol fractions within the leaf chamber were used to describe instrument function. Measurements for each run were fitted to an exponential function to estimate average rates of CO2 assimilation and transpiration during the measurement period. Stomatal conductances and intercellular CO2 mol fractions were also computed. Linear data analysis used in the LI-6200 produced similar results for assimilation rates, stomatal conductances and intercellular CO2 concentrations compared to a more rigorous nonlinear analysis, provided humidity within the chamber was kept constant during the measurement period. Instrument performance for CO2 fluxes was confirmed by injecting pure CO2 at steady rates from a microsyringe into the chamber. Miniature evaporimeters were designed to check H2O flux measurements. Significant discrepancies were observed between LI-6200 estimates of H2O fluxes and direct measurement and errors were attributed to adsorption desorption of water vapour on chamber walls or to leaks. The leaf chamber should be stored at humidities and temperatures similar to those during measurement conditions for maximum reliability of results.  相似文献   

20.
Methane metabolism was investigated with respect to depth in intertidal microbial mats of the Great Sippewissett Salt Marsh, Massachusetts. Although sulfate-reducing organisms dominate anaerobic carbon consumption in marine microbial mats, methanogens persist and their activity varies vertically and temporally in the mat system. In the Sippewissett mats, potential methane production for all mat layers was higher in the spring (17.2 ± 4.5 nmol CH4 cm−2 day−1) than in the fall (3.0 ± 1.1 nmol CH4 cm−2 day−1) and maximal rates were consistently observed in proximity to the chemocline (5–10 mm depth). The methane flux from the mat surface did not vary appreciably over time due to the ability of methanotrophic activity to limit net methane production. Evidence indicates that both aerobic and anaerobic oxidation of methane occurs in this system. The importance of H2 as a substrate for methanogenesis appeared to be the greatest at the mat surface (0–10 mm), and the proportion of methylotrophic methanogens generally increased with depth. These results suggest that both non-equilibrium H2 dynamics and the use of non-competitive substrates permit coexistence of methanogens and sulfate-reducing organisms in the mat system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号