首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Galactosyltransferase (GalTase) prepared from human milk was found to exist as a complex with e-lactalbumin as demonstrated by crossed immunoelectrophoresis against specific antibodies raised against the complex. GalTase activity was stable to proteolysis and, when subjected to gel filtration on Ultrogel AcA54, the enzyme activity eluted as a single peak. A second peak of activity was found to be adsorbed to the column matrix and was eluted with buffer containing 1 M NaC1. The hydrophobic fraction represented 5% of the total GalTase activity in human milk. After polyacrylamide gel electrophoresis the main enzyme activity peak was represented by polypeptides of 67kDa molecular weight and of 14kDa molecular weight. Electroblotting of these peptides onto a nitrocellulose membrane followed by determination of GalTase activity showed activity for 45–55 kDa and for 14 kDa peptides. The hydrophobic fraction from the AcA54 column was resolved into polypeptides of 110 kDa-45 kDa molecular weight, all of which contained GalTase activity after blotting. It is supposed that the GalTase from non-proteolyzed milk is composed of a 14 kDa polypeptide containing the active site together with another part of the polypeptide backbone which is involved in the regulation of GalTase activity by -lactalbumin, a third part of the polypeptide is responsible for the membrane insertion.Abbreviations UDP-Gal uridine diphosphatidyl galactose - GlcNAc N-acetylglucosamine - Glc glucose - PAGE polyacrylamide gel electrophoresis - GalTase galactosyl transferase (EC 2.4.1.22) - -ovo pronosac digest fraction of hen ovomucoid To whom correspondence should be addressed.  相似文献   

2.
Crystallographic B factor of critical residues at enzyme active site   总被引:1,自引:0,他引:1  
Thirty-seven sets of crystallographic enzyme data were selected from Protein Data Bank (PDB, 1995). The average temperature factors (B) of the critical residues at the active site and the whole molecule of those enzymes were calculated respectively. The statistical results showed that the critical residues at the active site of most of the enzymes had lower B factors than did the whole molecules, indicating that in the crystalline state the critical residues at the active site of the natural enzymes possess more stable conformation than do the whole molecules. The flexibility of the active site during the unfolding by denaturing was also discussed.  相似文献   

3.
The rate of hydrolysis of oligomers by the endopolygalacturonase of yeast is in the order: heptamer > hexamer > pentamer > tetramer. This suggests that the active site accommodates at least 7 units. Since the heptamer disappears concurrently with the bulk of larger oligomers, the maximum number of units appears to be 7. The release of labelled (unsaturated, or 3H labelled and reduced) end units from larger substrate is interpreted to indicate that the enzyme interacts with 3 saccharide units toward the reducing end from the bond to be broken, and with 4 units toward the non-reducing end. The relative affinities for the enzyme of saccharide units in various positions are unequal, as indicated by the very low relative rate of monomer production from the hydrolysis of hexamer and pentamer, and the apparently unequal probability of two other modes of hexamer hydrolysis [(tetramer + dimer) = 2.5 (trimer + trimer)].  相似文献   

4.
We show here that the ribozyme domain of the Neurospora VS ribozyme consists of separable upper and lower subdomains. Deletion analysis demonstrates that the entire upper subdomain (helices III/IV/V) is dispensable for site-specific cleavage activity, providing experimental evidence that the active site is contained within the lower subdomain and within the substrate itself. We demonstrate an important role in cleavage activity for a region of helix VI called the 730 loop. Surprisingly, several loop sequences, sizes, and structures at this position can support site-specific cleavage, suggesting that a variety of non-Watson-Crick structures, rather than a specific loop structure, in this region of the ribozyme can contribute to formation of the active site.  相似文献   

5.
Two mutant forms of fumarase C from E. coli have been made using PCR and recombinant DNA. The recombinant form of the protein included a histidine arm on the C-terminal facilitating purification. Based on earlier studies, two different carboxylic acid binding sites, labeled A- and B-, were observed in crystal structures of the wild type and inhibited forms of the enzyme. A histidine at each of the sites was mutated to an asparagine. H188N at the A-site resulted in a large decrease in specific activity, while the H129N mutation at the B-site had essentially no effect. From the results, we conclude that the A-site is indeed the active site, and a dual role for H188 as a potential catalytic base is proposed. Crystal structures of the two mutant proteins produced some unexpected results. Both mutations reduced the affinity for the carboxylic acids at their respective sites. The H129N mutant should be particularly useful in future kinetic studies because it sterically blocks the B-site with the carboxyamide of asparagine assuming the position of the ligand's carboxylate. In the H188N mutation at the active site, the new asparagine side chain still interacts with an active site water that appears to have moved slightly as a result of the mutation.  相似文献   

6.
We have developed an electrospray ionisation mass spectrometry (ESI-MS) technique that can be applied to rapidly determine the number of intact active sites in proteins. The methodology relies on inhibiting the protein with an active-site irreversible inhibitor and then using ESI-MS to determine the extent of inhibition. We have applied this methodology to a test system: a serine protease, subtilisin Carlsberg, and monitored the extent of inhibition by phenylmethylsulfonyl fluoride (PMSF), an irreversible serine hydrolase inhibitor as a function of the changes in immobilisation and hydration conditions. Two types of enzyme preparation were investigated, lyophilised enzymes and protein-coated microcrystals (PCMC).  相似文献   

7.
Replacement of Mg (II), the natural activator of brain hexokinase (EC 2.7.1.1) by paramagnetic Mn (II) without affecting the physiological properties of the enzyme, has rendered brain hexokinase accessible to investigations by magnetic resonance methods. Based on such studies, a site on the enzyme, where Mn (II) binds directly with high affinity has been identified and characterized in detail. Use ofβ,γ-bidentate Cr (III) ATP as an exchange-inert analogue for Mn (II) ATP has shown that Mn (II) binding directly to the enzyme has no catalytic role but another Mn (II) ion binding simultaneously and independently to the enzyme through the nucleotide bridge participates in enzyme function. However, using this direct binding Mn (II) ion and a covalently bound spin label as paramagnetic probes a beginning has been made in mapping the ligand binding sites of the enzyme. Ultra-violet difference spectroscopy has revealed the presence of at least two glucose 6-phosphate locations on the enzyme one of which presumably is the high affinity regulatory site modulated by substrate glucose. Elution behaviour of the enzyme on a phosphocellulose column suggests that glucose induces a specific phosphate site on the enzyme to which the phosphate bearing regulatory ligands of the enzyme may bind.  相似文献   

8.
Isotope substitution of 57Fe (I = 12) for 56Fe has a pronounced effect on the two EPR signals of hydrogenase of Chromatium vinosum. It is proposed that signal 1, the intensity of which is increased several-fold by a deoxygenation-oxygenation cycle with a simultaneous increase of a signal from Fe3+, is due to a [3Fe-xS] cluster. It is further proposed that signal 2 is caused by a magnetic interaction of a [4Fe-4S]3+ cluster with an unidentified paramagnet. The addition of 10 μM Ni to the culture medium (already containing 1 μM Ni) increased the enzyme activity 3–6-fold, without effect on the growth of the bacterium. Addition of 61Ni (I = 32) to the medium did not change the EPR spectrum of hydrogenase. From a comparison of the EPR signal intensities and the enzyme activities it is concluded that, in the hydrogenase preparation as isolated, molecules containing a [3Fe-xS) cluster are not active, and that active molecules have a [4Fe-4S]3+(3+,2+) cluster plus an as yet unidentified paramagnetic redox component. The latter is thought to be the primary site of interaction of the enzyme with H2. Ni is considered as a possible candidate for this component.  相似文献   

9.
Glycosidases play a key role in a number of biological processes and, as such, are of considerable clinical and biotechnological importance. Knowledge of the identifies of catalytically important active site residues is essential for understanding the catalytic mechanism, for enzyme classification, and for targeted bioengineering of glycosidases with altered characteristics. Here we review and discuss traditional strategies and novel approaches based on tandem mass spectrometry for the identification of the key active site residues in glycosidases.  相似文献   

10.
The objective of the present study is to delineate the role of active site arginine and histidine residues of horseradish peroxidase (HRP) in controlling iodide oxidation using chemical modification technique. The arginine specific reagent, phenylglyoxal (PGO) irreversibly blocks iodide oxidation following pseudofirst order kinetics with second order rate constant of 25.12 min-1 M-1. Radiolabelled PGO incorporation studies indicate an essential role of a single arginine residue in enzyme inactivation. The enzyme can be protected both by iodide and an aromatic donor such as guaiacol. Moreover, guaiacol-protected enzyme can oxidise iodide and iodide-protected enzyme can oxidise guaiacol suggesting the regulatory role of the same active site arginine residue in both iodide and guaiacol binding. The protection constant (Kp) for iodide and guaiacol are 500 and 10 M respectively indicating higher affinity of guaiacol than iodide at this site. Donor binding studies indicate that guaiacol competitively inhibits iodide binding suggesting their interaction at the same binding site. Arginine-modified enzyme shows significant loss of iodide binding as shown by increased Kd value to 571 mM from the native enzyme (Kd = 150 mM). Although arginine-modified enzyme reacts with H2O2 to form compound II presumably at a slow rate, the latter is not reduced by iodide presumably due to low affinity binding.The role of the active site histidine residue in iodide oxidation was also studied after disubstitution reaction of the histidine imidazole nitrogens with diethylpyrocarbonate (DEPC), a histidine specific reagent. DEPC blocks iodide oxidation following pseudofirst order kinetics with second order rate constant of 0.66 min-1 M-1. Both the nitrogens (, ) of histidine imidazole were modified as evidenced by the characteristic peak at 222 nm. The enzyme is not protected by iodide suggesting that imidazolium ion is not involved in iodide binding. Moreover, DEPC-modified enzyme binds iodide similar to the native enzyme. However, the modified enzyme does not form compound II but forms compound I only with higher concentration of H2O2 suggesting the catalytic role of this histidine in the formation and autoreduction of compound I. Interestingly, compound I thus formed is not reduced by iodide indicating block of electron transport from the donor to the compound I. We suggest that an active site arginine residue regulates iodide binding while the histidine residue controls the electron transfer to the heme ferryl group during oxidation.  相似文献   

11.
Conformational changes at the active site of pantetheine hydrolase (EC3.5.1.-) during guanidine hydrochloride (GndHCl) denaturation were investigated by UV and circular dichroism spectroscopy and by electron spin resonance spectroscopy, following the spectral behaviour of the nitroxide radicals (N- (1- oxyl - 2,2,5,5, -tetramethyl-3-pyrrolidinyl) iodacetamide) covalently linked to the two active site cysteine residues. At low denaturant concentrations (0.2 M) no conformational changes may be observed, whereas the catalytic activity, is strongly affected. The results indicate that the active site of pantetheine hydrolase is labile and unfolds under conditions in which no global tertiary struscture modifications can be observed.  相似文献   

12.
Photoxidation with methylene blue and rose bengal and chemical modification by diethylpryrocarbonate of pig liver 5-aminolevulinic acid dehydratase produced strong inactivation of the enzyme which was concentration dependent. Loss of enzyme activity by both photoxidation and ethoxyformylation was pH and time-dependent and protected by the presence of the substate and competitive inhibitors. The rate of inactivation was directly related to the state of protonation of histidyl groups, the unprotonated from being modified at a much faster rate than the protonated form. Plots of the pseudo-first order rate constants for 5-aminolevulinic acid dehydratase inactivation against pH resulted in typical titration curves showing inflection points at about pH 6.4 for methylene blue and rose bengal and 6.8 for diethylprocarbonate providing further and unequivocal evidence for the existence of critical histidyl groups at the active centre of the enzyme.  相似文献   

13.
Modification of maize δ-aminolevulinic acid dehydratase (ALAD) by diethylpyrocarbonate (DEP) caused rapid and complete inactivation of the enzyme. The inactivation showed saturation kinetics with a half inactivation time at saturating DEP equal to 0.3 min and KDEP  0.3 mM. Substrate δ-aminolevulinic acid (ALA) and competitive inhibitor levulinic acid protected against inactivation, thereby indicating that DEP modifies the active site. The modified enzyme showed an increase in absorbance at 240 nm which was lost upon treatment with 0.8 M hydroxylamine. Most of the activity lost by DEP treatment could be restored after treatment with 0.8 M hydroxylamine. The results suggest that DEP modifies 7.4 residues/mole of the enzyme. These histidine residues are essential for catalysis by ALAD.  相似文献   

14.
15.
It is known that anionic surface residues play a role in the long-range electrostatic attraction between acetylcholinesterase and cationic ligands. In our current investigation, we show that anionic residues also play an important role in the behavior of the ligand within the active site gorge of acetylcholinesterase. Negatively charged residues near the gorge opening not only attract positively charged ligands from solution to the enzyme, but can also restrict the motion of the ligand once it is inside of the gorge. We use Brownian dynamics techniques to calculate the rate constant kon for wild type and mutant acetylcholinesterase with a positively charged ligand. These calculations are performed by allowing the ligand to diffuse within the active site gorge. This is an extension of previously reported work in which a ligand was allowed to diffuse only to the enzyme surface. By setting the reaction criteria for the ligand closer to the active site, better agreement with experimental data is obtained. Although a number of residues influence the movement of the ligand within the gorge, Asp74 is shown to play a particularly important role in this function. Asp74 traps the ligand within the gorge, and in this way helps to ensure a reaction. © 1998 John Wiley & Sons, Inc. Biopoly 46: 465–474, 1998  相似文献   

16.
The active site and partial sequence of cobra venom acetylcholinesterase   总被引:3,自引:0,他引:3  
About 30% of the primary structure of acetylcholinesterase (AchE) from the cobraNaja naja oxiana has been determined. The sequence around the serine residue labeled by diisopropylfluorophosphate (DFP) was found to be TVTLFGESAGAASVGM which is similar to the active sites of AChE from other tissues. The part of the primary structure determined shows 76% identity with AChE from Torpedo and 42% identity with the Drosophila enzyme. A surprisingly large identity (42% in the sequence determined) was found with lysophospholipase from rat (Hanet al., 1987).  相似文献   

17.
Penicillin G acylase (PGA) is used for the commercial production of semi-synthetic penicillins. It hydrolyses the amide bond in penicillin producing 6-aminopenicillanic acid and phenylacetate. 6-Aminopenicillanic acid, having the beta-lactam nucleus, is the parent compound for all semi-synthetic penicillins. Penicillin G acylase from Kluyvera citrophila was purified and chemically modified to identify the role of arginine in catalysis. Modification with 20 mM phenylglyoxal and 50 mM 2,3-butanedione resulted in 82% and 78% inactivation, respectively. Inactivation was prevented by protection with benzylpenicillin or phenylacetate at 50 mM. The reaction followed psuedo-first order kinetics and the inactivation kinetics (V(max), K(m), and k(cat)) of native and modified enzyme indicates the essentiality of arginyl residue in catalysis.  相似文献   

18.
The electron-transfer (ET) reaction between Fe(CN)64- and copper zinc superoxide dismutase (CuZn-SOD) occurs at the active site of the enzyme. The ET parameters which are sensitive to the denaturation have been used to determine the conformational changes of the active site induced by guanidine hydrochloride and thermal denaturation. The decreases of ET rates for all the denatured enzyme samples reflect the collapse of the active cavity of enzyme in the unfolding processes. The interesting changes of ET amplitude for the enzyme denatured at different pH values suggest that electrostatic interaction plays an important role in the conformational changes of active site. From the results of the kinetic analyses, it is concluded that the conformational changes of the active site are parallel with the inactivation.  相似文献   

19.
Caspases are cysteine proteases that play a critical role in the initiation and regulation of apoptosis. These enzymes act in a cascade to promote cell death through proteolytic cleavage of intracellular proteins. Since activation of apoptosis is implicated in human diseases such as cancer and neurodegenerative disorders, caspases are targets for drugs designed to modulate their action. Active caspases are heterodimeric enzymes with two symmetrically arranged active sites at opposite ends of the molecule. A number of crystal structures of caspases with peptides or proteins bound at the active sites have defined the mechanism of action of these enzymes, but molecular information about the active sites before substrate engagement has been lacking. As part of a study of peptidyl inhibitors of caspase-3, we crystallized a complex where the inhibitor did not bind in the active site. Here we present the crystal structure of the unoccupied substrate-binding site of caspase-3. No large conformational differences were apparent when this site was compared with that in enzyme-inhibitor complexes. Instead, the 1.9 A structure reveals critical side chain movements in a hydrophobic pocket in the active site. Notably, the side chain of tyrosine204 is rotated by approximately 90 degrees so that the phenol group occupies the S2 subsite in the active site. Thus, binding of substrate or inhibitors is impeded unless rotation of this side chain opens the area. The positions of these side chains may have important implications for the directed design of inhibitors of caspase-3 or caspase-7.  相似文献   

20.
Proteinase K, the extracellular serine endopeptidase (E.C. 3.4.21.14) from the fungus Tritirachium album limber, is homologous to the bacterial subtilisin proteases. The binding geometry of the synthetic inhibitor carbobenzoxy-Ala-Phechloromethyl Ketone to the active site of proteinase K was the first determined from a Fourier synthesis based on synchrotron X-ray diffraction data between 1.8 Å and 5.0 Å resolution. The protein inhibitor complexes was refined by restrained least-squares minimization with the data between 10.0 and 1.8 Å. The final R factor was 19.1% and the model contained 2,018 protein atoms, 28 inhibitors atoms, 125 water molecules, and two Ca2+ ions. The peptides portion of the inhibitor is bound to the active center of proteinase K by means of a three-stranded antiparallel pleated sheet, with the side chain of the phenylalanine located in the P1 site. Model building studies, with lysine replacing phenylalanine in the inhibitor, explain the relatively unspecific catalytic activity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号