首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two monoiodinated derivatives of glucagon were prepared by lactoperoxidase catalyzed iodination followed by separation on reverse-phase high-performance liquid chromatography. The purified (Tyr-10) and (Tyr-13)-mono-125I-labeled glucagon isomers were characterized and studied with respect to their binding to the receptors of isolated intact rat hepatocytes. The extent of steady-state binding to cellular receptor sites differed for the two labeled glucagon tracers at 37 degrees C as well as at 15 degrees C with (Tyr-10)-mono-125I-glucagon displaying higher receptor binding. The apparent equilibrium constants, Kd,app at 37 degrees C are 3.6 +/- 0.4 nM (mean +/- S.E. of three independent experiments) for the tyrosine-13-labeled tracer and 5.9 +/- 0.6 nM for the tyrosine-10-labeled glucagon with native glucagon as competitor. Since the observed Kd in the competition assay is a function of the true Kd values of the monoiodinated radioactive glucagon isomers and native glucagon, the dissociation constants were also measured with chemically identical tracer and competitor. Under these conditions, we obtained Kd values of 1.3 +/- 0.2 nM for the tyrosine-10-labeled analog and 2.0 +/- 0.2 nM for the tyrosine-13-labeled glucagon isomers confirming the higher receptor binding affinity of (Try-10)-mono-125I-glucagon. All competition curves fit the mathematical expression for a model of non-cooperative binding to a single class of receptors.  相似文献   

2.
We characterized binding and endocytosis of 125I-bovine lactoferrin by isolated rat hepatocytes. Iron-depleted (apo-Lf), approximately 30% saturated (Lf), and iron-saturated (holo-Lf) lactoferrin were used. At 4 degrees C, cells bound 125I-apo-Lf and 125I-holo-Lf with nearly identical apparent first order kinetics (t1/2 = approximately 42 min). Holo-Lf and apo-Lf competed with each other for binding. Hepatocytes bound lactoferrin optimally at pH greater than or equal to 7 but poorly at pH less than or equal to 6. Ca2+ (greater than or equal to 100 microM) enhanced Lf binding to cells, and holo-Lf remained monomeric with Ca2+ present as determined by gel filtration chromatography. With Ca2+, cells exhibited approximately 10(6) high affinity sites (Kd approximately 20 nM) and approximately 10(7) low affinity sites (Kd approximately 700 nM) for both apo- and holo-Lf. Without Ca2+, cells bound 125I-holo-Lf by the low affinity component only. EGTA and dextran sulfate together released greater than or equal to 90% 125I-Lf prebound at 4 degrees C, but individually removed separate populations of surface-bound 125I-Lf. Cells bound 125I-Lf in a Ca(2+)-dependent manner with dextran sulfate present. We conclude that the high affinity but not the low affinity sites require Ca2+; only the low affinity sites are dextran sulfate-sensitive. Neither transferrin nor asialo-orosomucoid blocked lactoferrin binding to hepatocytes. Some cationic proteins but not others inhibited lactoferrin binding. At 37 degrees C, hepatocytes endocytosed 125I-apo-Lf and 125I-holo-Lf similarly, and hyperosmolality (greater than 500 mmol/kg) blocked uptake by approximately 90%. These data support the proposal that hepatocytes regulate blood lactoferrin concentration by receptor-mediated endocytosis.  相似文献   

3.
In this study, we report the preparation of [3H]glucagon and its characteristics of binding to receptors in the rat liver plasma membrane. Binding of the labeled hormone is optimal at pH 7.0. In the absence of GTP, [3H]glucagon binding to receptors is slow and the time of equilibration is inversely proportional to the hormone concentration. In the presence of GTP, equilibrium is reached within 30 s regardless of hormone levels, and the kinetics of binding are in accord with the kinetics of activation of adenylate cyclase by native glucagon in the presence of the nucleotide. Equilibrium binding measurements indicate that, in the absence of GTP, the binding isotherm is sigmoidal with an apparent Kd of 2 nM. The addition of GTP results in a complex binding isotherm with about 90% of the binding sites having a considerably lower apparent dissociation constant (greater than 10 nM) and a small population of sites having high affinity for the hormone. The binding properties of [3H]glucagon are compared with those of 125I-glucagon, and the implications of the actions of GTP on glucagon binding are discussed in relation to the overall regulation of adenylate cyclase by hormone and the nucleotide.  相似文献   

4.
We have developed conditions for studying the binding, uptake, degradation and transport of 125I-labelled IgG by yolk sac in vitro. Specific binding to tissue at 4 degrees C and to paraformaldehyde-treated tissue at 37 degrees C was time- and temperature-dependent and showed saturation kinetics (Kd,4 degrees C = 2.9 X 10(-6) M, Kd,37 degrees C = 5.3 X 10(-6) M). Uptake was studied at 37 degrees C using untreated tissue (K uptake = 13.3 X 10(-6) M) and was inhibited by preincubation with metabolic poisons but not with cycloheximide. Tissue that had been incubated with 125I-labelled IgG at 37 degrees C released radiolabelled degradation products and intact 125I-labelled IgG into the medium. Experiments with paraformaldehyde-treated and untreated tissue showed that release of intact 125I-labelled IgG was mostly the result of ligand dissociation from surface binding sites. However, more 125I-labelled IgG was released from untreated tissue than could be accounted for solely by loss of surface-bound ligand and the difference was presumed to reflect uptake, transport and exocytosis of 125I-labelled IgG. Degradation of 125I-labelled IgG was inhibited by leupeptin and lysosomotropic amines. These drugs had no detectable effect on 125I-labelled IgG release. The results suggest that degradation and transport of IgG are not intimately related and are consistent with a previously proposed model for IgG transport via coated vesicles which do not fuse with lysosomes and for non-selective uptake into another class of vesicle which does fuse with lysosomes.  相似文献   

5.
V. Iwanij  H. Stukenbrok 《Protoplasma》1995,188(3-4):202-212
Summary The binding of125I-glucagon to the cell surface and the pathway of intracellular transport of this hormone by rat hepatocytes in vivo were studied by light and EM autoradiography. Radiolabeled glucagon injected into the blood stream was taken up predominantly by the hepatocytes. Negligible radioactivity was found to be associated with other cell types such as endothelial or Kupffer cells. Our results indicate that at early time points after injection glucagon has been preferentially interacting with the sinusoidal domain of the hepatocytes and found to be associated with coated pits and uncoated vesicles corresponding to endosomes. At 15–20 min time intervals glucagon grains were found within hepatocyte interior. Later, at 30 min after injection glucagon grains accumulate in the Golgi-lysosomal region of hepatocyte often in close proximity to the opening of the bile canaliculi. Accordingly a portion of internalized125I-glucagon was found to be released into the bile thereby indicating that a transcytotic pathway may be involved in this peptide's clearance process.  相似文献   

6.
The disappearance of vasoactive-intestinal-peptide (VIP) binding sites at the cell surface of a cultured target cell, originating from a human colonic adenocarcinoma (HT 29 cell line), was studied, after preexposition of the cell to the peptide, as a function of time, VIP concentration and temperature. Maximum effect (60-80% loss of binding capacity) was obtained after a 5-10 min exposure of the cells at 37 degrees C with a VIP concentration of 100 nM. The t1/2 of maximum disappearance was less than 2 min and the concentration of native VIP giving half-maximum decrease in 125I-VIP binding was 6 nM. The affinity of remaining binding sites for VIP was not affected compared to that of control cells (Kd = 0.3 nM). Disappearance of VIP binding sites was specific since, with the same conditions of preincubation, the specific binding of 125I-labeled epidermal growth factor to HT 29 cells was not modified. The phenomenon was reversible and 90% of binding capacity could be restored in less than 60 min by incubating cells in VIP-free medium. Correlatively we showed, by two independent experimental procedures, that 125I-VIP, initially bound to HT 29 cells, was maximally internalized after 10 min of incubation at 37 degrees C. All the data strongly suggest that: internalization of VIP is receptor-mediated; upon exposure to native VIP, VIP receptors are down-regulated or at least sequestered within HT 29 cells.  相似文献   

7.
Identification of Glucagon Receptors in Rat Retina   总被引:2,自引:1,他引:1  
In this study, we characterize the glucagon receptors on rat retinal particulate preparations. The specific binding of 125I-glucagon was saturable and reversible. Apparent equilibrium conditions were established within 30-45 min. Analysis of binding data is compatible with the existence of two classes of binding sites: a high-affinity class with a KD of 7 +/- 0.8 nM and a Bmax of 2.3 +/- 0.2 pmol/mg of protein and a low-affinity class with a KD of 84.4 +/- 2.5 nM and a Bmax of 16.5 +/- 2.3 pmol/mg of protein. The 125I-glucagon binding to retinal particulate preparation was not inhibited by 1 microM concentrations of insulin, atrial natriuretic factor, angiotensin II, somatostatin, and vasoactive intestinal peptide. However, synthetic human pancreatic growth hormone-releasing factor, hGRF-44, inhibited binding, although the concentration required for half-maximal displacement was 10-fold higher than that for native glucagon. Glucagon binding was GTP sensitive. Inclusion of 0.1 mM GTP in the binding assay produced an increase in the concentration of unlabeled glucagon required for half-maximal displacement of 125I-glucagon, from 23 to 220 nM. Glucagon stimulated adenylate cyclase formation in retinal particulate preparations. The concentration of glucagon required for half-maximal activation of retinal adenylate cyclase was 16.2 nM. These results suggest that glucagon may play a role as a neurosignal transmitter in rat retina.  相似文献   

8.
Plasma membranes have been purified from porcine thyroid gland homogenate by discontinuous sucrose gradient centrifugation. The preparations contained specific binding sites for thyrotropin but not for luteinizing hormone or the beta subunits of thyrotropin and luteinizing hormone. Optimum conditions of 125I-labeled thyrotropin binding were pH 6.0-6.5 and 37 degrees C. Thyrotropin binding was reduced by divalent (Ca2+, Mg2+) and monovalent cations (Na+, K+, Li+), 50% inhibition being obtained at 10 mM and 50 mM respectively. Displacement curves of 125I-labeled bovine or porcine thyrotropin by the unlabeled hormone from three species was in the order of increasing concentrations (bovine greater than porcine greater than human) which is the order of decreasing biological activity of these hormone preparations in the assay in vivo in the mouse. The validity of the results was established by controlling that porcine membranes bound the native and the 125I-labeled hormones with equal affinity. A single type of high-affinity (Kd = 0.28 nM) binding sites was detected for bovine and porcine thyrotropins. In contrast, porcine plasma membranes bound human thyrotropin with a lower affinity (Kd = 70 nM). A good correlation was found at equilibrium and in the conditions of the cyclase assay, between receptor occupancy and adenylate cyclase activation for the three hormones.  相似文献   

9.
Specific thyroid hormone (TH) binding sites have been detected in nuclei of erythrocytes obtained from developing chick embryos. The binding characteristics and relative affinities for TH analogs were those expected of TH receptors. Nuclear triiodothyronine (T3) saturation analysis was carried out in vitro by incubating intact erythrocytes in M199 medium with 3-200 pM [125I]T3 for 1 hr at 37 degrees C or 20-24 hr at 21 degrees C. Nuclei were obtained by centrifugation after lysing the erythrocytes in a stabilizing buffer containing 0.3% saponin, followed by addition of Triton X-100 (final concentration 0.2%) to minimize the nonspecific binding. Scatchard analysis of equilibrium binding data suggested that the nuclei possess a single class of binding sites. The binding is reversible and the rate of dissociation is temperature dependent. T3 and T4 appear to bind to the same sites, but the affinity of T3 was 16 times greater. Among TH analogs tested, Triac had the highest affinity followed by L-T3, D-T3, Tetrac, L-T4, D-T4, T2, and rT3. Serial studies performed on different days of chick embryogenesis demonstrated a rapid and significant decrease of the erythrocyte nuclear T3 receptor. On Day 5, the number of T3 binding sites was maximal at 1600 +/- 100 per nucleus. The number declined steadily until, by Day 20, it had reached about 60 +/- 10 sites/nucleus. RBC from adult and baby chickens had less than 1% as many binding sites as those from Day 5 embryos. There was no significant change in the affinity of the sites (Kd approximately equal to 20 pM at 37 degrees C). The reason for the loss of T3 binding sites during embryogenesis is not known. Since the plasma level of the TH increases during embryogenesis, this may reflect down regulation. Another possibility is that the change in erythrocyte population which occurs during this period involves production of erythrocytes which contain fewer T3 binding sites.  相似文献   

10.
125I-glucagon binding and degradation were studied in highly purified plasma membranes from rat livers. Specific 125I-glucagon binding increased rapidly with time at 30°C and reached a maximum between 30 and 120 min. At 120 min the labelled material present in the supernatants from incubation mixtures had extensively lost its ability to rebind to fresh membranes whatever the glucagon concentration. This impairment was not due to the release of a degradative activity into the incubation mixture, suggesting a membrane-mediated process. The presence of proteinase inhibitors (bacitracin/aprotinin) resulted both in an increase in specific 125I-glucagon binding to membranes and an improvement in the ability of the labelled material from the supernatant to rebind to fresh membranes. When analysed by Bio-Gel P-10 chromatography the loss in the ability of the labelled material in the supernatants to rebind to fresh membranes correlated with a decrease in the labelled material which eluted as 125I-glucagon from the column. Chromatographic analysis overestimated 125I-glucagon when compared to the radioreceptor assay. The labelled material extracted from membranes by Triton X-100 solubilization or dissociated from membranes after exposure to an excess of unlabelled glucagon mainly eluted as 125I-glucagon. However, a significant amount (20–30%) of the labelled material eluted in the low molecular weight region.  相似文献   

11.
The asialoglycoprotein receptor has been identified on a continuous human hepatoma cell line, HepG2. This receptor requires Ca2+ for ligand binding and is specific for asialoglycoprotein. There are approximately 150,000 ligand molecules bound/cell at 4 degrees C. These receptors represent a homogeneous population of high affinity binding sites with Kd = 7 X 10(-9) M. From the rate of 125I-ASOR binding at 4 degrees C, kon was 0.95 X 10(6) M-1 min-1. Uptake of 125I-ASOR at 37 degrees C was approximately 0.02 pmol/min/10(6) cells.  相似文献   

12.
The binding of human 125I-labeled HDL3 (high-density lipoproteins, rho 1.125-1.210 g/cm3) to a crude membrane fraction prepared from bovine liver closely fit the paradigm expected of a ligand binding to a single class of identical and independent sites, as demonstrated by computer-assisted binding analysis. The dissociation constant (Kd), at both 37 and 4 degrees C, was 2.9 micrograms protein/ml (approx. 2.9 X 10(-8) M); the capacity of the binding sites was 490 ng HDL3 (approx. 4.9 pmol) per mg membrane protein at 37 degrees C and 115 at 4 degrees C. Human low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) also bound to these sites (Kd = 41 micrograms protein/ml, approx. 6.7 X 10(-8) M for LDL, and Kd = 5.7 micrograms protein/ml, approx. 7.0 X 10(-9) M for VLDL), but this observation must be considered in light of the fact that the normal circulating concentrations of these lipoproteins are much lower than those of HDL. The binding of 125I-labeled HDL3 to these sites was inhibited only slightly by 1 M NaCl, suggesting the presence of primarily hydrophobic interactions at the recognition site. The binding was not dependent on divalent cations and was not displaceable by heparin; the binding sites were sensitive to both trypsin and pronase. Of exceptional note was the finding that various subclasses of human HDL (including subclasses of immunoaffinity-isolated HDL) displaced 125I-labeled HDL3 from the hepatic HDL binding sites with different apparent affinities, indicating that these sites are capable of recognizing highly specific structural features of ligands. In particular, apolipoprotein A-I-containing lipoproteins with prebeta electrophoretic mobility bound to these sites with a strikingly lower affinity (Kd = 130 micrograms protein/ml) than did the other subclasses of HDL.  相似文献   

13.
S J Frost  R H Raja  P H Weigel 《Biochemistry》1990,29(45):10425-10432
125I-HA, prepared by chemical modification at the reducing sugar, specifically binds to rat hepatocytes in suspension or culture. Intact hepatocytes have relatively few surface 125I-HA binding sites and show low specific binding. However, permeabilization of hepatocytes with the nonionic detergent digitonin results in increased specific 125I-HA binding (45-65%) and a very large increase in the number of specific 125I-HA binding sites. Scatchard analysis of equilibrium 125I-HA binding to permeabilized hepatocytes in suspension at 4 degrees C indicates a Kd = 1.8 x 10(-7) M and 1.3 x 10(6) molecules of HA (Mr approximately 30,000) bound per cell at saturation. Hepatocytes in primary culture for 24 h show the same affinity but the total number of HA molecules bound per cell at saturation decreases to approximately 6.2 x 10(5). Increasing the ionic strength above physiologic concentrations decreases 125I-HA binding to permeable cells, whereas decreasing the ionic strength above causes an approximately 4-fold increase. The divalent cation chelator EGTA does not prevent binding nor does it release 125I-HA bound in the presence of 2 mM CaCl2, although higher divalent cation concentrations stimulate 125I-HA binding. Ten millimolar CaCl2 or MnCl2 increases HA binding 3-6-fold compared to EGTA-treated cells. Ten millimolar MgCl2, SrCl2, or BaCl2 increased HA binding by 2-fold. The specific binding of 125I-HA to digitonin-treated hepatocytes at 4 degrees C increased greater than 10-fold at pH 5.0 as compared to pH 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
WiDR colorectal carcinoma cells are highly sensitive to the synergistic cytotoxic effects of tumor necrosis factor (TNF) and gamma-interferon (IFN-gamma). In the present study, we have investigated the effects of recombinant human (rh) TNF and IFN-gamma on the binding of both ligands in this cell line. WiDR cells exhibited high affinity binding sites for both 125I-rhTNF (Kd = 1.66 x 10(-10) M, 920 sites/cell) and 125I-rhIFN-gamma (Kd = 4.15 x 10(-10) M, 18,960 sites/cell). Preincubation of the cells with rhTNF (24 h) increased cell-associated 125I-rhIFN-gamma radioactivity by 129% when binding was carried out at 37 degrees C, as a result of an increase in both surface bound and internalized 125I-rhIFN-gamma. However, rhTNF did not alter the degradation profile of released 125I-rhIFN-gamma radioactivity. Scatchard analysis of 125I-rhIFN-gamama binding data (4 degrees C) revealed that rhTNF induced a 245% increase in 125I-rhIFN-gamma binding sites. Conversely, rhIFN-gamma caused a 68% increase in 125I-rhTNF binding sites and a 58% increase in receptor affinity. rhIFN-gamma also increased the subsequent binding of 125I-rhIFN-gamma, whereas rhTNF increased the subsequent binding of 125I-rhTNF. Furthermore, preincubation of the cells with both rhTNF and rhIFN-gamma also resulted in an increase in the binding of both ligands. Actinomycin D and cycloheximide blocked all the effects of rhTNF and rhIFN-gamma on ligand binding. However, the basal level of 125I-rhIFN-gamma binding was insensitive to either inhibitor, whereas the basal level of 125I-rhTNF binding was decreased by both inhibitors. These data indicate that in some cell types TNF and IFN-gamma may induce an increase in their own receptors (homologous up-regulation) and concomitantly increase each other's receptors (heterologous up-regulation) and that these actions are due, in part, to enhanced receptor synthesis.  相似文献   

15.
A combination of biochemistry and morphology was used to demonstrate that more than 95 percent of the isolated rat hepatocytes prepared by collagenase dissociation of rat livers retained the pathway for receptor-mediated endocytosis of asialoglycoproteins (ASGPs). Maximal specific binding of (125)I-asialoorosomucoid ((125)I-ASOR) to dissociated hepatocytes at 5 degrees C (at which temperature no internalization occurred) averaged 100,000-400,000 molecules per cell. Binding, uptake, and degredation of (125)I- ASOR at 37 degrees C occurred at a rate of 1 x 10(6) molecules per cell over 2 h. Light and electron microscopic autoradiography (LM- and EM-ARG) of (125)I-ASOR were used to visualize the surface binding sites at 5 degrees C and the intracellular pathway at 37 degrees C. In the EM-ARG experiments, ARG grains corresponding to (125)I-ASOR were distributed randomly over the cell surface at 5 degrees C but over time at 37 degrees C were concentrated in the lysosome region. Cytochemical detection of an ASOR-horseradish peroxidase conjugate (ASOR-HRP) at the ultrastructural level revealed that at 5 degrees C this specific ASGP tracer was concentrated in pits at the cell surface as well as diffusely distributed along the rest of the plasma membrane. Such a result indicates that redistribution of ASGP surface receptors had occurred. Because the number of surface binding sites of (125)I-ASOR varied among cell preparations, the effect of collagenase on (125)I-ASOR binding was examined. When collagenase-dissociated hepatocytes were re-exposed to collagenase at 37 degrees C, 10-50 percent of control binding was observed. However, by measuring the extent of (125)I-ASOR binding at 5 degrees C in the same cell population before and after collagenase dissociation, little reduction in the number of ASGP surface receptors was found. Therefore, the possibility that the time and temperature of the cell isolations allowed recovery of cell surface receptors following collagenase exposure was tested. Freshly isolated cells, dissociated cells that were re-exposed to collagenase, and perfused livers exposed to collagenase without a Ca(++)-free pre-perfusion, were found to bind 110-240 percent more(125)I-ASOR after 1 h at 37 degrees C that they did at 0 time. This recovery of surface ASGP binding activity occurred in the absence of significant protein synthesis (i.e., basal medium or 1 mM cycloheximide). Suspensions of isolated, unpolarized hepatocytes were placed in monolayer culture for 24 h and confluent cells were demonstrated to reestablish morphologically distinct plasma membrane regions analogous to bile canalicular, lateral, and sinusoidal surfaces in vivo. More than 95 percent of these cells maintained the capacity to bind, internalize, and degrade (125)I-ASOR at levels comparable to those of the freshly isolated population. ASOR-HRP (at 5 degrees C) was specifically bound to all plasma membrane surfaces of repolarized hepatocytes (cultured for 24 h) except those lining bile canalicular-like spaces. Thus, both isolated, unpolarized hepatocytes and cells cultured under conditions that promote morphological reestablishment of polarity maintain the pathway for receptor- mediated endocytosis of ASGPs.  相似文献   

16.
Bombesin-like neuropeptides, including mammalian gastrin-releasing peptide (GRP), are potent mitogens for Swiss 3T3 cells. In this study, we have characterized the bombesin receptor in membrane preparations from these cells. Addition of Mg2+ during cell homogenization was essential to preserve 125I-GRP binding activity in the resulting membrane preparation. The effect of Mg2+ was concentration dependent, with a maximum at 5 mM. Specific binding of 125I-GRP was saturable; Scatchard analysis indicated a single class of high-affinity sites of Kd = (2.1 +/- 0.3) x 10(-10) M at 15 degrees C and Kd = (1.9 +/- 0.4) x 10(-10) M at 37 degrees C, and a maximum binding capacity of 580 +/- 50 fmol/mg of protein (15 degrees C) or 604 +/- 40 fmol/mg of protein (37 degrees C). The kinetically derived dissociation constant was 1.5 x 10(-10) M. 125I-GRP binding was inhibited in a concentration-dependent manner by various peptides containing the highly conserved C-terminal heptapeptide of the bombesin family, including bombesin, GRP, neuromedin B and the 8-14 fragment of bombesin. In contrast, a variety of structurally unrelated mitogens and neuropeptides had no effect. The cross-linking agent ethyleneglycolbis(succinimidylsuccinate) covalently linked 125I-GRP to a single Mr 75 000-85 000 protein in membrane preparations of 3T3 cells. Affinity labelling of this molecule was specific and dependent on the presence of Mg2+ during membrane preparation. Finally, the non-hydrolysable GTP analogue guanosine-5'-[gamma-thio]triphosphate (GTP[S]) caused a concentration-dependent inhibition of 125I-GRP binding and cross-linking to 3T3 cell membranes [concentration giving half-maximal inhibition (IC50) approximately 0.2 microM]. The inhibitory effect was specific (GMP, ATP or ATP[S] had no effect at 10 microM) and was due to an increase in Kd from (1.7 +/- 0.2) x 10(-10) M to (4.3 +/- 0.6) x 10(-10) M in the presence of 10 microM-GTP[S]. This modulation of ligand affinity and cross-linking implies that the bombesin receptors that mediate mitogenesis in Swiss 3T3 cells are coupled to a guanine-nucleotide-binding-protein signal-transduction pathway.  相似文献   

17.
A thrombin receptor in resident rat peritoneal macrophages.   总被引:2,自引:0,他引:2  
Resident rat peritoneal macrophages possess 6 x 10(2) high-affinity binding sites per cell for bovine thrombin with a Kd of 11 pM, and 7.5 x 10(4) low-affinity sites with a Kd of 5.8 nM. These binding sites are highly specific for thrombin. Half-maximal binding of 125I-labeled bovine thrombin is achieved after 1 min at 37 degrees C, and after 12 min at 4 degrees C. The reversibly bound fraction of the ligand dissociates according to a biexponential time course with the rate constants 0.27 and 0.06 min-1 at 4 degrees C. Part of the tracer remains cell-associated even after prolonged incubation, but all cell-associated radio-activity migrates as intact thrombin upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The bound thrombin is minimally endocytosed as judged by the resistance to pH 3 treatment, and the receptor does not mediate a quantitatively important degradation of the ligand. The binding is not dependent on the catalytic site of thrombin, since irreversibly inactivated thrombin also binds to the receptor. 125I-labeled thrombin covalently cross-linked to its receptor migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a Mr 160,000, corresponding to an approximate receptor size of Mr 120,000.  相似文献   

18.
Isolated, intact rat liver nuclei have high-affinity (Kd = 10(-9) M) binding sites that are highly specific for nonsteroidal antiestrogens, especially for compounds of the triphenylethylene series. Nuclear [3H]tamoxifen binding capacity is thermolabile, being most stable at 4 degrees C and rapidly lost at 37 degrees C. More [3H]tamoxifen, however, is specifically bound at incubation temperatures of 25 degrees C and 37 degrees C than at 4 degrees C although prewarming nuclei has no effect, suggesting exchange of [3H]tamoxifen for an unidentified endogeneous ligand. Nuclear antiestrogen binding sites are destroyed by trypsin but not by deoxyribonuclease I or ribonuclease A. The nuclear antiestrogen binding protein is not solubilized by 0.6 M potassium chloride, 2 M sodium chloride, 0.6 M sodium thiocyanate, 3 M urea, 20 mM pyridoxal phosphate, 1% (w/v) digitonin or 2% (w/v) sodium cholate but is extractable by sonication, indicating that it is tightly bound within the nucleus. Rat liver nuclear matrix contains high-affinity (Kd = 10(-9) M) [3H]tamoxifen binding sites present in 5-fold higher concentrations (4.18 pmol/mg DNA) than in intact nuclei (0.78 +/- 0.10 (S.D.) pmol/mg DNA). Low-speed rat liver cytosol (20 000 X g, 30 min) contains high-capacity (955 +/- 405 (S.D.) fmol/mg protein), low-affinity (Kd = 10.9 +/- 4.5 (S.D.) nM) antiestrogen binding sites. In contrast, high-speed cytosol (100 000 X g, 60 min) contains low-capacity (46 +/- 15 (S.D.) fmol/mg protein), high-affinity (Kd = 0.61 +/- 0.20 (S.D.) nM) binding sites. Low-affinity cytosolic sites constitute more than 90% of total liver binding sites, high-affinity cytosolic sites 0.3%-3.2%, and nuclear sites less than 0.5% of total sites.  相似文献   

19.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

20.
When human platelets are incubated with 500 nM-PAF-acether (platelet-activating factor. 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) under equilibrium conditions (60 min, 22 degrees C, non-stirred suspensions), two classes of fibrinogen binding sites are exposed: one class with a high affinity [Kd (7.2 +/- 2.1) X 10(-8) M, 2367 +/- 485 sites/platelet, n = 9] and one class with a low affinity [Kd (5.9 +/- 2.4) X 10(-7) M, 26972 +/- 8267 sites/platelet]. Preincubation with inhibitors of cyclo-oxygenase (acetylsalicylic acid, indomethacin) or thromboxane synthetase (UK 38.485) completely abolishes high-affinity binding, leaving low-affinity binding unchanged. In contrast, ADP scavengers (phosphocreatine/creatine kinase or phosphoenol pyruvate/pyruvate kinase) completely prevent low-affinity binding, leaving high-affinity binding unaltered. Initial binding studies (2-10 min incubation) confirm these findings with a major part of the binding being sensitive to ADP scavengers, a minor part sensitive to indomethacin and complete blockade with both inhibitors. Increasing the temperature to 37 degrees C decreases the number of low affinity-binding sites 6-fold without changing high-affinity binding. Aggregation, measured as the rate of single platelet disappearance, then depends on high-affinity binding at 10 nM-fibrinogen or less, whereas at 100 nM-fibrinogen or more low-affinity binding becomes predominant. These findings point at considerable platelet activation during binding experiments. However, arachidonate metabolism [( 3H]arachidonate mobilization and thromboxane synthesis) and secretion [( 14C]serotonin and beta-thromboglobulin) are about 10% or less of the amounts found under optimal conditions (5 units of thrombin/ml 37 degrees C, stirring). We conclude that PAF-acether induces little platelet activation under binding conditions. The amounts of thromboxane A2 and secreted ADP, however, are sufficient for initiating high- and low-affinity fibrinogen binding via mutually independent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号